21AID12	REINFORCEMENT LEARNING	L	Τ	P	C
		3	0	0	3
Course Objectives • To knowledge on the model the trial-and-error learning process that is needed in many problem situations • To understand operations research, behavioral psychology, and AI. • To apply the basic mathematical foundations of reinforcement learning. UNIT I INTRODUCTION TO REINFORCEMENT LEARNING 9 HOURS Definition of reinforcement learning-History of reinforcement learning -Key concepts: agent, environment, reward, policy, value function, Q-learning-Examples of reinforcement learning applications-Markov Decision Processes (MDPs)- Properties of MDPs: state space, action space, transition function, reward function, discount factor -Value iteration and policy iteration algorithms-Applications of MDPs					
UNIT II	DYNAMIC PROGRAMMING	9 HOURS		5	
algorithms-Finite and infinite horizon problems-Examples of dynamic programming algorithms i reinforcement learning UNIT III REINFORCEMENT LEARNING METHODS 9 HOURS Monte Carlo estimation of state-value and action-value functions-Incremental Monte Carlo updat and exploration techniques-First-visit and every-visit Monte Carlo algorithms-Policy evaluation with Monte Carlo methods- Temporal-Difference Learning- TD prediction and control algorithms Sarsa, Q-learning, expected Sarsa-Off-policy TD learning with importance sampling-Compariso					
with Monte Car			0.110		
UNIT IV	EXPLORATION AND EXPLOITATION		9 HC	OURS)
optimistic initia Thompson sam optimization (I	ploitation trade-off and its importance in reinforcement learni lization, and Boltzmann exploration methods-Upper confidence pling algorithms-Bayesian reinforcement learning- Policy Searc PPO) and trust region policy optimization (TRPO) algorit Learning- Multi-agent Q-learning and policy gradient methods	bour h- Pr	nd (U roxim	JCB) nal po	and olicy
UNIT V	REINFORCEMENT LEARNING APPLICATIONS		9 HC	OURS	\$
	learning applications in robotics, gaming, finance, and healthcan cement learning- Discussion of potential research projects and ap				arch
UNIT VI	RECENT TRENDS				
Recent trends of	n applications of Reinforcement Learning	1			
		'AL I	PERI	ODS	: 45

Course Outcomes:

- Define the key features of reinforcement learning that distinguishes it from AI and noninteractive machine learning
- Given an application
- Describe (list and define) multiple criteria for analyzing RL algorithms and evaluate algorithms on these metrics: e.g. regret, sample complexity, computational complexity, empirical performance, convergence, etc
- Describe the exploration vs exploitation challenge and compare and contrast at least two approaches for addressing this

Textbooks:

1. Reinforcement Learning: An Introduction, Sutton and Barto, 2nd Edition.

Reference Books:

- 1. Deep Reinforcement Learning" by Pieter Abbeel and John Schulman
- 2. Hands-On Reinforcement Learning with Python" by Sudharsan Ravichandiran
- 3. Reinforcement Learning: State-of-the-Art" by Marco Wiering and Martijn van Otterlo