		1		,	
21AML03	DEEP LEARNING AND ITS APPLICATIONS	L 3	Т 0	P	C 3
Course Objectives				0	
Course Object To understa	ves and the theoretical foundations, algorithms and methodologies of	Neura	al Ne	twork	ζ
 To design a 	nd develop an application using specific deep learning models				•
• To provide	the practical knowledge in handling and analysing real world app	olicati	ons.		
UNIT I	MACHINE LEARNING BASICS	9 Hours			
Learning alg	gorithms, Maximum likelihood estimation, Building machine	learni	ng a	lgorit	hm,
Neural Netw	orks Multilayer Perceptron, Back-propagation algorithm and its	varia	nts S	stocha	istic
gradient dec	ent, Curse of Dimensionality	1			
UNIT II	DEEP LEARNING ARCHITECTURES		9 H	ours	
Machine Learning and Deep Learning, Representation Learning, Width and Depth of Neural					
Networks, A	ctivation Functions: RELU, LRELU, ERELU, Unsupervised Tra	ining	of N	eural	
Networks, R	estricted Boltzmann Machines, Auto Encoders, Deep Learning A	pplic	ation	S	
UNIT III	CONVOLUTIONAL NEURAL NETWORKS	9 Hours			
Architectura	Overview Motivation Lavers Filters Parameter sharing Rem	uloriz	ation	Don	ular
CNN Archit	ectures: ResNet AlexNet - Applications	urariz	auon	, 1 Op	ulai
Civit / Heint	cetures. Resiver, mexiver implications	T			
UNIT IV	TRANSFER LEARNING	9 Hours			
Transfer lear	ning Techniques, Variants of CNN: DenseNet, PixelNet				
UNIT V	SEQUENCE MODELLING – RECURRENT AND RECURSIVE NETS	9 Hours			
Recurrent N	eural Networks, Bidirectional RNNs, Encoder-decoder sequenc	e to s	seque	ence	
architectures	- BPTT for training RNN, Long Short Term Memory Networks.		-		
UNIT VI	CASE STUDY				
Case Study of	on Neural Networks				
	ΤΟ	TAL	PER	IOD	S: 45
Course Outcom	nes:				
At the end of the	e course, Students can able to				
• Recogniz	ze the characteristics of deep learning models that are useful to so	lve re	eal-w	orld	
problems	S.				
• Understa	nd different methodologies to create application using deep nets.	datad	Former	miatr	of
• Identify	and appry appropriate deep learning argorithms for analyzing the	uata		arrety	01
T					
<u>Text books:</u>	codfellow Voshua Rangio and Aaron Courville, "Doon Learning	х [,] , У.	ІТ Ъ.	.	
2017		5 , IVI	11 11	C88,	
2. Josh	Patterson, Adam Gibson "Deep Learning: A Practitioner's Appro	ach",	O'Re	eilly	
Medi	a, 2017				

Reference Books:

- 1. Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012.
- 2. Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition 2014.