21CSE27	ADVANCED COMPUTER ARCHITECTURE	L	Τ	P	C				
		3	0	0	3				
Course Obie									
• To introduce the students to the recent trends in the field of Computer Architecture and									
identify performance related parameters									
• To lear	rn the different multiprocessor issues								
• To exr	pose the different types of multicore architectures.								
• To uno	derstand the design of the memory hierarchy.								
FUNDAMENTALS OF COMPLITER DESIGN									
UNIT I	AND ILP	9 Hours							
Fundamentals of	of Computer Design – Measuring and Reporting Performance -	- Ins	tructi	on L	evel				
Parallelism and its Exploitation - Concepts and Challenges - Exposing ILP - Advanced Branch									
Prediction - Dy	ynamic Scheduling - Hardware-Based Speculation - Exploiting	g ILF	' - Ir	struc	tion				
Delivery and Sp	beculation - Limitations of ILP - Multithreading								
UNIT II	MEMORY HIERARCHY DESIGN	9 Hours							
Introduction –	Optimizations of Cache Performance – Memory Technology and	nd O	ptimi	zatio	ns –				
Protection: Vi	rtual Memory and Virtual Machines - Design of Memory H	Hieran	chies	s – C	Case				
Studies.									
UNIT III	MULTIPROCESSOR ISSUES		9 H	ours					
Introduction- C	Centralized, Symmetric and Distributed Shared Memory Arc	chitec	tures	–Ca	iche				
Coherence Issu	es - Performance Issues - Synchronization - Models of Mem	ory	Cons	istenc	:у –				
Case Study-Inte	rconnection Networks – Buses, Crossbar and Multi-stage Intercon	nnect	ion N	Jetwo	orks				
UNIT IV	MULTICORE ARCHITECTURES		9 H	ours					
Homogeneous	and Heterogeneous Multi-core Architectures - Intel Multicore A	rchite	ecture	es - S	UN				
CMP archited	eture - IBM Cell Architecture. Introduction to Warehous	e-sca	le c	ompu	iters				
Architectures-	Physical Infrastructure and Costs- Cloud Computing -Cas	se S	tudy-	Go	ogle				
Warehouse-Sc	ale Computer.	1							
UNIT V	VECTOR, SIMD AND GPU ARCHITECTURES		9 H	ours					
Introduction-Ve	ctor Architecture – SIMD Extensions for Multimedia – Graphics	Proc	essin	o Un	its –				
Case Studies –	- GPGPU Computing – Detecting and Enhancing Loop Leve	el Pa	rallel	ism-C	Case				
Studies.									
UNIT VI	LATEST TRENDS								
Latest Trends									
TOTAL PERIODS: 45									
Course Outc	omes:								
• Identify the limitations of ILP.									
• Discuss	the issues related to multiprocessing and suggest solutions								
Point ou	• Point out the salient features of different multicore architectures and how they exploit								

parallelism.

- Discuss the various techniques used for optimising the cache performance
- Design hierarchal memory system
- Point out how data level parallelism is exploited in architectures

Text books:

1. John L. Hennessey and David A. Patterson, —Computer Architecture – A Quantitative Approach, Morgan Kaufmann / Elsevier, 5th edition, 2012.

2. Darryl Gove, —Multicore Application Programming: For Windows, Linux, and Oracle Solaris, Pearson, 2011.

Reference Books:

1. David B. Kirk, Wen-mei W. Hwu, —Programming Massively Parallel Processors, Morgan Kauffman, 2010.

2. David E. Culler, Jaswinder Pal Singh, —Parallel Computing Architecture : A hardware/software approach , Morgan Kaufmann /Elsevier Publishers, 1999.

3. Kai Hwang and Zhi.Wei Xu, —Scalable Parallel Computing, Tata McGraw Hill, NewDelhi, 2003.

	L	Т	P	С				
	0	0	2	1				
Course Objective:								
LIST OF EXPERIMENTS		30 Periods						
	·							
Course Outcomes:								