21PHY	M1
411 11 1	υI

Course Objective:

• To enhance the fundamental knowledge in physics and its applications relevant to various streams of engineering and technology.

UNIT-I	SOLID MECHANICS AND MECHANICAL PROPERTIES	9 Hours
Elasticity Stress	s-strain diagram and its uses – factors affecting elastic modulus - T	Forsional Pendulum
-Young's modu	lus by cantilever, Uniform and non-uniform bending - stress due t	to bending in beams
- Tensile test,	plastic deformation - strengthening methods - Creep resistanc	e, fracture fatigue-
methods of incr	easing fatigue life.	
UNIT II	LASER PRINCIPLES AND OPTICAL FIBERS	9 Hours
Laser Character	ristics - Einstein coefficient &its significance-population inversior	1 - working principle
, pumping sche	eme ,components of Nd:YAG, He:Ne, Co2 laser- Semiconducto	or Laser - advanced
applications of	laser - light propagation through fibers - acceptance angle-numeri	cal aperture types of
optical fibers -	fiber optic communication, fiber optic sensors.	
UNIT III	CRYSTAL PHYSICS AND OPTOELECTRONICS	9 Hours
Crystal directions, planes and miller indices - symmetry elements-coordination number and packing		
factor for HCP,	FCC,BCC and diamond structure - crystal imperfections - crystal	growth techniques
– Bridgmann T	echnique - classifications of optical materials - absorption, emissi	on and scattering of
lights - LED-O	LED-laser diode- solar cell- quantum dot laser.	-
UNIT IV	QUANTUM MECHANICS	9 Hours
Black body rad	liation - planks concept - Duality nature, De Broglie hypothesis	for matter waves -
Compton effect	t - Heisenberg's uncertainty principle - Schrödinger time depend	ent wave equation -
Schrödinger tin	ne Independent wave equation - particle in 1D box - scanning tuni	heling microscope.
UNIT V	NANO SCIENCE &ADVANCED ENGINEERING MATERIALS	9 Hours
Introduction to	nano materials - properties of nano materials - quantum confiner	nents(quantum well
wire ˙) - sin	ngle electron transistor-magnetic semiconductor - preparation of r	ano materials – Bal
milling Technic	que - carbon nano tubes(CNT), properties & applications of nano p	particles - Types and
applications of	Ceramics-composites-polymers- metallic materials - preparation	and applications of
metallic glasses	- Melt Spinning System - shape memory alloy(SMA)	
Course Outcon	nes:	
Upon completion	on of this course, The students will gain knowledge on	
1. basics of so	olid mechanics and mechanical properties.	
2. the concept	ts of LASER principles and their applications in fiber optics.	
3. basics of ci	systals, their structures, different	
4. crystal grov	wth techniques and optoelectronic devices	
5. advanced r	hysics concepts of quantum theory and its applications in tunneling	ng microscopes

- 5. advanced physics concepts of quantum theory and its applications in tunneling microscopes.
- 6. the concepts of Nano science and advanced engineering materials and its applications

Text Books:

- 1. Dattu R.Joshi, "Engineering Physics", Tata McGraw-Hill, New Delih, 2010.
- 2. Arthur Beiser et al., Concepts of Modern Physics, 2013, Sixth Edition, Tata McGraw Hill.

Reference Books:

- 1. Thiruvadigal, J. D., Ponnusamy, S. Sudha.D. and Krishnamohan M., "*Physics for Technologists*", SSS Publications, 2015.
- 2. Leonard. I. Schiff, "Quantum Mechanics", Third Edition, Tata McGraw Hill, 2010.
- 3. Alberto Sona, "Lasers and their applications", Gordon and Breach Science Publishers Ltd., 1976.
- 4. Wole Soboyejo, "*Mechanical Properties of Engineered Materials*", Marcel Dekker Inc., 2003. William Silfvast, Laser Fundamentals, 2008, Cambridge University Press.