L	Т	Р	С
3	0	0	3

Course Objectives

- To give an overview of the theoretical foundations of computer science from the perspective of formal languages
- To illustrate finite state machines to solve problems in computing
- To explain the hierarchy of problems arising in the computer sciences.
- To familiarize Regular grammars, context frees grammar.

UNIT I	FINITE AUTOMATA	9 Hours			
Introduction, Deterministic Finite Automata (DFA) -Formal definition, simpler notations (state transition diagram, transition table), language of a DFA. Nondeterministic Finite Automata (NFA)- Definition of NFA, language of an NFA, Equivalence of Deterministic and Nondeterministic Finite Automata, Applications of Finite Automata, Finite Automata with Epsilon Transitions, Eliminating Epsilon transitions, Minimization of Deterministic Finite Automata, Finite automata with output (Moore and Mealy machines) and Inter conversion					
UNIT II	UNIT II REGULAR EXPRESSIONS				
 Introduction, Identities of Regular Expressions, Finite Automata and Regular Expressions- Converting from DFA's to Regular Expressions, Converting Regular Expressions to Automata, applications of Regular Expressions. REGULAR GRAMMARS: Definition, regular grammars and FA, FA for regular grammar, Regular grammar for FA. Proving languages to be non-regular - Pumping lemma, applications, Closure properties of regular languages. 					
	annu, upphounons, closure properties of regular language	D -2.			
UNIT III	CONTEXT FREE GRAMMER	9 Hours			
UNIT III Derivation T Ambiguity in Enumeration	CONTEXTFREEGRAMMERTrees, Sentential Forms, Rightmost and Leftmost derivatCFG's, Minimization of CFG's, CNF, GNF, Pumping LeiI of Properties of CFL (Proof's omitted).	9 Hours ions of Strings. mma for CFL's,			
UNIT III Derivation T Ambiguity in Enumeration UNIT IV	CONTEXT FREE GRAMMER Trees, Sentential Forms, Rightmost and Leftmost derivat CFG's, Minimization of CFG's, CNF, GNF, Pumping Lei of Properties of CFL (Proof's omitted). PUSHDOWN AUTOMATA	9 Hours ions of Strings. mma for CFL's, 9 Hours			
UNIT III Derivation T Ambiguity in Enumeration UNIT IV Definition, M Acceptance TURING MA TM as accept	CONTEXT FREE GRAMMER Series, Sentential Forms, Rightmost and Leftmost derivat CFG's, Minimization of CFG's, CNF, GNF, Pumping Lendre of Properties of CFL (Proof's omitted). PUSHDOWN AUTOMATA Iodel, Acceptance of CFL, Acceptance by Final State a by Empty stack and its Equivalence, Equivalence of CFG ACHINES (TM): Formal definition and behaviour, Languageters and TM as a computer of integer functions, Types of	9 Hours ions of Strings. mma for CFL's, 9 Hours and and PDA. ages of a TM, f TMs.			
UNIT III Derivation T Ambiguity in Enumeration UNIT IV Definition, M Acceptance TURING MA TM as accep UNIT V	CONTEXT FREE GRAMMER Series, Sentential Forms, Rightmost and Leftmost derivat CFG's, Minimization of CFG's, CNF, GNF, Pumping Lendred of Properties of CFL (Proof's omitted). PUSHDOWN AUTOMATA Iodel, Acceptance of CFL, Acceptance by Final State a by Empty stack and its Equivalence, Equivalence of CFG ACHINES (TM): Formal definition and behaviour, Langua pters and TM as a computer of integer functions, Types of RECURSIVE AND RECURSIVELY ENUMERABLE LANGUAGES	9 Hours ions of Strings. mma for CFL's, 9 Hours and and PDA. ages of a TM, f TMs. 9 Hours			

Course Outcomes:

- To use basic concepts of formal languages of finite automata techniques
- To Design Finite Automata's for different Regular Expressions and Languages
- To Construct context free grammar for various languages
- To solve various problems of applying normal form techniques, push down automata and
- Turing Machines
- To participate in GATE, PGECET and other competitive examinations

Text books:

1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman (2007), Introduction to Automata Theory

Languages and Computation, 3rdedition, Pearson Education, India.

Reference Books:

1. K. L. P Mishra, N. Chandrashekaran (2003), Theory of Computer Science-Automata

Languages and Computation, 2nd edition, Prentice Hall of India, India

	L	Τ	Р	С				
	0	0	2	1				
Course Objective: •								
IST OF EXPERIMENTS 30 Period		ods						
Course Outcomes: •								