21AML04	HARDWARE ARCHITECTURE FOR MACHINE LEARNING		T	P	C 2
		3	0	0	3
Course Object	uves in about architectural techniques to design hardware for trai	nina	and	inford	ma
	achine learning systems	ning	anu	mere	
	w more about Hardware platforms				
	w about different accelerators				
UNIT I	INTRODUCTION TO MACHINE LEARNING		9 H	ours	
multiple va Models: Di Probabilistic	n to machine learning – Linear Regression Models: Least ariables, Bayesian linear regression, gradient descent, Lin scriminant function – Probabilistic discriminative model - L c generative model – Naive Bayes, Maximum margin cl nine, Decision Tree, Random forests	near Logis	Class tic re	sifica gress	tio ior
UNIT II	CONVOLUTIONAL NEURAL NETWORKS		9 H	ours	
Classification	itectures – Convolution – Pooling Layers – Transfer I on using Transfer Learning – Recurrent and Recursive Nets – Deep Recurrent Networks – Recursive Neural Networks – A	- Red	curren	nt Ne	
UNIT III	HARDWARE PLATFORMS		9 H	ours	
	need for machine learning; Overview of hardware platforn CPU, GPU, GPU+DSP, FPGAs, ASIC)	ns fo	r trai	ning	and
UNIT IV	ARCHITECTURES		9 H	ours	
	gn for machine learning; GPU based acceleration for M for ML; Hardware-software co-optimization for machine lea			A ba	ase
UNIT V	APPLICATIONS		9 H	ours	
generation	gmentation – Object Detection – Automatic Image Cap with Generative adversarial networks – Video to Text with odels for Computer - Software libraries (PyTorch)	-	-		-
UNIT VI	RECENT TRENDS				
Recent Hardv	vare Platforms available				
	ТОТ	AL F	PERI	ODS	: 4
• Kno	<u>mes:</u> we course, Students can able to w about architectural techniques to design hardware for train achine learning systems	ning	and	infere	enc

Reference Books:

1. Huang, Hantao., Yu, Hao. Compact and Fast Machine Learning Accelerator for IoT Devices. Germany: Springer Singapore, 2018.