

DHANALAKSHMI SRINIVASAN UNIVERSITY

SAMAYAPURAM (NEAR SAMAYAPURAM TOLL PLAZA), TIRUCHIRAPALLI – 621 112 TAMIL NADU, INDIA

SCHOOL OF ENGINEERING AND TECHNOLOGY

B.TECH-ELECTRONICS AND COMMUNICATION ENGINEERING CURRICULUM & SYLLABUS REGULATION-2021

21ECE01	ELECTRONIC DEVICES	L	Т	Р	С
		3	1	0	4
Course Obje	ctives		ef the h		
• To accelectro	phaint the students with the construction, theory and ope	d effec	t Trans	istors,	
Power	control devices, LED, LCD and other Opto-electronic o	devices	•		
• To ex	plain the characteristics of BJT,FET and Power devices				
1. Opera Trans 2. Expla 3. Descr	te the basic electronic devices such as PN junction diode stors, Power control devices, and display devices n the V-I characteristic of diode,BJT, UJT and SCR be the equivalence circuits of transistors	e, Bipo	lar and	Field e	ffect
Unit 1 - Sem	iconductor Diode			9	•
PN Junction I Current Dens capacitances-	Diode-Current Equation & Energy band diagram-Diffusi ities- Forward and Reverse Bias Characteristic- Transition Switching Characteristics- Break down in PN Junction	ion Cur on capa Diodes	rrent-De acitance	ensities es-Diffu	Drift ision
Unit 2 - Bipo	lar Junction Transistors				9
NPN-PNP O	perations & Early Effect-Current Equation-Input and Ou	tput Cł	naracter	istics o	f CE,

NPN-PNP Operations & Early Effect-Current Equation-Input and Output Characteristics of CE, CB & CC-Hybrid π Model - h-parameter Model-Ebers Moll Model-Gummel Poon Model-Multi Emitter Transistor.

Unit 3 - Field Effect Transistors

JFETs-Drain Characteristics- Transfer Characteristics, Current Equation, Pinch off Voltage and its significance, MOSFET- Characteristics & Threshold voltage, Channel length modulation, E-MOSFET & D-MOSFET Characteristics, Comparison of MOSFET with JFET

Unit 4 - Special Semiconductor Devices

Metal Semiconductor Junction –MESFET, PINFET, CNTFET, Dual Gate MOSFET, Schottky Barrier Diode, Zener Diode, Varactor Diode, Tunnel Diode, LASER Diode, LDR

Unit 5 - Power Devices and Display Devices

Operation and Characteristics - UJT, SCR, DIAC, TRIAC &Solar Cell - LED, LCD, Photo Transistor and Opto Coupler

Total Hours: 45

9

9

9

TEXT BOOKS:

- 1. Donald A Neaman, Semiconductor Physics and Devices, Fourth Edition, Tata McGrawHill Inc. 2012
- 2. Salivahanan. S, Suresh Kumar. N, Vallavaraj.A, Electronic Devices and circuits, Third Edition, Tata McGraw- Hill, 2008

REFERENCES:

- 1. Robert Boylestad and Louis Nashelsky, Electron Devices and Circuit Theory Pearson Prentice Hall, 10th edition, July 2008
- 2. R.S.Sedha, A Text Book of Applied Electronics S.Chand Publications, 2006
- 3. Yang, Fundamentals of Semiconductor devices, McGraw Hill International Edition, 1978

21CSE02

DATA STRUCTURES

L	Τ	Р	С
3	0	0	3

9

9

Course Objectives

The course aims:

- To understand the various techniques of sorting and searching
- To design and implement arrays, stacks, queues, and linked lists
- To understand the complex data structures such as trees and graphs •
- To increase the knowledge of usage of data structures in algorithmic perspective.

Course Outcomes

On completion of the course, students should be able to

- 1. Develop understand linear data structures such as stacks, queues, linked lists, etc.
- 2. Apply the concept of trees and graph data structures in real world scenarios
- 3. Comprehend the implementation of sorting and searching algorithms

Unit 1 - Linear Data Structures

Notations and Analysis– Arrays and its representations – Stacks and Queues – Linked lists – Linked list-based implementation of Stacks and Queues – Evaluation of Expressions – Linked list based polynomial addition.

Unit 2 - Non-Linear Data Structures

Trees – Binary Trees – Binary tree representation and traversals – Threaded binary trees – Binary tree representation of trees – Application of trees: Set representation and Union -Find operations – Graph representations - Graph Traversals and its Connected components. 8

Unit 3 - Search Structures and Priority Queues

AVL Trees – Red-Black Trees – B-Tree, B+ - Tree – Splay Trees – Binary Heap – Leftist Heap

Unit 4 - Sorting

Insertion sort – Merge sort – Quick sort – Heap sort – Sorting with disks – k-waymerging – Sorting with tapes – Polyphase merge.

Unit 5 - Searching and Indexing

8 Linear

Search – Binary Search - Hash tables – Overflow handling – Cylinder Surface Indexing – Hash Index – B-Tree Indexing.

Unit 6 - Recent Trends

Recent trends in algorithms and data structures

Total Hours: 45

3

Text Books

1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 3rd edition, 2008, PEARSON

2. Ellis Horowitz and Sartaj Sahni. Fundamentals of Data Structures. 2nd Edition, 2008 Thomas H. Cormen, C.E. Leiserson, R L.Rivest and C. Stein, Introduction to Algorithms, 3.

Third edition, MIT Press, 2009.

Reference Books

1. Jean-Paul Tremblay and Paul G. Sorenson, An Introduction to Data Structures with Applications, Second Edition, Tata McGraw -Hill, New Delhi, 1991.

Alfred V. Aho, John E. Hopcroft and Jeffry D. Ullman, Data Structures & Algorithms, Pearson Education, New Delhi, 2006

ELECTRONIC CIRCUITS

L	Т	Р	С
3	0	0	3

Course Objectives

The course aims:

- To study and analysis the design of multistage amplifiers with different coupling
- schemes
- To study and analysis of frequency response of BJT amplifiers
- To familiarize the concepts of feedback amplifiers, oscillators and wave shaping
 aircuits
- circuits
- To study and analysis of various power amplifiers.

Course Outcomes

On completion of the course, students should be able to

- 1. Analyse the characteristics of different forms of amplifiers
- 2. Understand the importance of amplifiers used in high frequency
- 3. Use concepts of amplifiers for design practical applications
- 4. Evaluate the performance of time base generators and multivibrators
- 5. Analyse the characteristics of various power amplifiers.

Unit 1- Multistage Amplifiers

Classification of amplifiers- Distortion in amplifiers-Analysis of CE,CB,CC-Frequency response of BJT-RC coupled amplifier –Differential amplifier-cascode and cascade amplifier-Darlington pair-Different coupling schemes used in Amplifiers-illustrative problems.

Unit 2 – High Frequency Response

Effect of Coupling and Bypass capacitance-Analysis of BJT amplifiers in High frequency-Hybrid PI CE model-CE short circuit gain-Single stage CE transistor Amplifier response-Gain bandwidth product-Emitter follower at high frequency.

Unit **3** = Feedback amplifiers and Sinusoidal Oscillators

Basic Concept of Feedback amplifiers- Classification-characteristics of negative feedback-topologies of voltage amplifier-current amplifier-transconductance –trans-resistance - Basic Concept of oscillators – condition for oscillations - RC oscillator - LC oscillator - crystal oscillator.

Unit 4 – Time Base Generators and Multivibrators

Introduction of Time base circuits – Voltage-Time base circuit, Current-Time base circuit clipper and clamper circuits-monostable multivibrator-astable multivibrator- Bistable multivibrators.

Unit 5 - Power Amplifiers

Classification of Power Amplifiers – Class A, Class B and Class AB power Amplifiers-Transformer Coupled and Push Pull Class A and Class B Power Amplifiers. Cross-over Distortion in Pure Class B Power Amplifier, Class AB Power Amplifier – Complementary symmetry Push Pull Amplifier

Unit 6- Contemporary Issues

Total: 45 hours

5

Text Books

- Jacob Millman and D. Halkias, Integrated Electronics, 2nd edition McGraw Hill, 2017
- 2. Robert L.Boylested, Louis Nashelsky, Electronic Devices and circuit Theory, 11th edition, Pearson education, 2016

8

8

8

Reference Books

- 1. Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits: Theory and Applications Sixth edition, Oxford University Press,2016
- 2. Jacob Millman and Arvin Grabel, Microelectronics, McGraw Hill, 2nd edition, 2017

SIGNALS AND SYSTEMS

L	Т	P	С
3	0	0	3

Course Objectives

- To understand the basic properties of signal & systems.
- To know the methods of characterization of LTI systems in time domain.
- To analyze continuous time signals and system in the Fourier and Laplace domain.
- To analyze the signals and systems using Z transform.

Course Outcomes

At the end of the course student will be able

- 1. Classify the signals as continuous time and discrete time signals and classify systems based on their properties.
- 2. Determine the response of LTI system using convolution sum for DT system and Convolution Integral for CT system
- 3. Apply Fourier series and Fourier Transform for periodic Signals
- 4. Analyze system using Laplace transform and realize the structure for CT system
- 5. Analyze system using Z transform and realize the structure for DT system

Unit 1 - Classification of Signals and Systems

Continuous-Time and Discrete-Time signals—The Unit Impulse Unit Step, Unit RampSignals and other Basic Signals – Operation of Signals -Time Shifting – Time Reversal – Amplitude Scaling – Time Scaling – Signal Addition – Multiplications – Continuous- Timeand Discrete-Time Systems– Basic System Properties - Systems with and Without Memory

- Causality – Stability – Time Invariance – Linearity.

Unit 2 – Linear Time- Invariant Systems

Discrete-Time LTI system: The Convolution sum-tabulation method-matrix multiplication method-graphical and analytical approach – Solution of Difference Equations. Continuous-Time LTI Systems: The Convolution Integral - graphical and analytical approach – Properties of Linear Time-Invariant Systems – Solution of Differential Equations.

Unit 3 - Analysis of CT Signals using Fourier Series & Fourier Transform

Fourier Series Representation (Trigonometric and Exponential) of Continuous-Time Periodic Signals – Properties of Continuous-Time Fourier Series – Representation of Aperiodic Signals: The Continuous-Time Fourier Transform – The Fourier Transform for Periodic Signals – Properties of the Continuous-Time Fourier Transform – Convolution Property – The Multiplication Property.

Unit 4 - Analysis of Signals and Systems using Laplace Transform

The Laplace Transform – The Region of Convergence for Laplace Transform– The Inverse Laplace Transform using Partial fraction– Properties of the Laplace Transform– System Function and Block Diagram Representations-Direct Form I and Direct Form II.

Unit 5 - Analysis of Signals and Systems using Z-Transform

The Z-Transform – The Region of Convergence for the Z-Transform –The Inverse Z-Transform using Partial fraction and long division method– Properties of the Z-Transform – System Function and Block Diagram Representations-Direct Form I and Direct Form II.

Unit 6 – Recent Trends

Total Hours: 45

Text Books

1. Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, "Signals and Systems", 2nd E, Prentice Hall India, 2019.

2. A.Anand Kumar, "Signals and Systems", 3rd Edition, Prentice Hall India, 2018.

8

8

9

9

References

1. John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing, Principles, Algorithms, and Applications", 4th E, PHI, 2012

2. Robert A. Gable, Richard A. Roberts, "Signals & Linear Systems", 3rd E, John Wiley, 2014.

3. W Kamen& Bonnie's Heck, "Fundamentals of Signals and Systems", Pearson Education, 2016.

DIGITAL ELECTRONICS WITH HDL

L	Т	Р	С
3	0	0	3

Course Objectives

- To understand and design digital logic circuits
- To study and analyze the concepts of Combinational and sequential circuits
- To Understand Memory design concepts and its types
- Design the Combinational and Sequential circuits using HDL Programming

Course Outcomes

At the end of the course student will be able

- 1. Apply concepts of Digital Binary System and implementation of Gates.
- 2. Analyze and design of Combinational logic circuits with HDL Programming.
- 3. Analyze and design of sequential logic circuits with HDL Programming.
- 4. Apply the concept of Digital Logic Families with circuit implementation.
- 5. Understand the Memory design and its types

Unit 1 - Digital Logic and Arithmetic Circuits

Binary to decimal conversion – Decimal to binary conversion – Octal numbers – Hexadecimal numbers – Excess-3 code – Gray code. Binary to decimal conversion – Decimal to binary conversion – Octal numbers – Hexadecimal numbers – Excess-3 code – Gray code. NOT, OR, AND – Universal NAND and NOR gates – EX-OR and EX-NOR gates – DeMorgan's Theorems – Universal building blocks (NOT, OR, AND) Binary addition and subtraction – 1's complement – 2's complement – Adders (half & full) – Subtractor (half & full)

Unit 2 – Combinational and Data Processing Circuits

Sum of products method – Product of methods – Truth table of Karnaugh map – Pairs, Quads and Octet – Karnaugh map simplification – Digital Logic families and their parameters- 4X1 Multiplexer – 8X1 Multiplexer – 1X4 Demultiplexer – 1X8 De-multiplexer – Decoder – BCD-to-decimal decoder – Encoder – Parity Checkers, HDL Programming of Combinational circuits

Unit 3 - Sequential Circuits: Flip-Flops

Introduction, Terminologies used, S-R flip-flop, D flip-flop, JK flip-flop, Race-around condition, Master – slave JK flip-flop, T flip-flop, Conversion from one type of flip-flop to another, Application of flip-flops.

Unit 4 - Digital Counters & Shift Register

Introduction- Modes of operation of register (SISO, SIPO, PISO and PIPO). Counters – Asynchronous counter- Synchronous counter – Ripple counters – MOD-7 ripple counter – Decade counter – 4 bit down counter – Up/down counter, HDL Programming of Sequential circuits.

Unit 5 – Memories

Classification of memories –RAM organization – Write operation –Read operation –Memory cycle-Memory decoding – memory expansion – Static RAM Cell-Dynamic RAM cell-Programmable Logic Array (PLA)- Programmable Array Logic (PAL)

Unit 6 – Recent Trends

Total Hours: 45

Text Books

1. Donald P Leach, Malvino Digital Principles and Applications, McGraw Hill Electronic Devices and circuit.

2. Prof. C. Kumar and Selvakumar, Digital Electronics, , N.V Publications

8

8

9

9

2

3. Stephen Brown, Zvonko Vranesic, Fundamentals of Digital Logic with VHDL Design, TMH, 3rd Edition, 2012

References

1. Frank Vahid, Digital Design with RTL Design, Verilog and VHDL, Wiley India, 2nd Edition, 2010

2. Samir Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis, PHI, 2010W Kamen& Bonnie's Heck, "Fundamentals of Signals and Systems", Pearson Education, 2016.

- 3. M. Morris Mano and M. D. Ciletti, Digital Design, Pearson Education.
- 4. RP Jain, Modern Digital Electronics, Tata McGraw Hill Publication.
- 5. David J. Comer, Digital Logic & State Machine Design, Oxford University Press.

21ECEP1	ELECTRONIC DEVICES AND CIRCUITS	L	T 0		P 4	C 2
Course Object	Ves	U	Ū	,	-	
To familiarise t	he students with					
To learn	the usage of electronic components.					
To learn	the characteristics of basic electronic devices such as Dio	de.]	BJT	'. F	ET.	
To learn	the Pulse generation using IC 555 Timer	,	001	, -		
Course Outcor	nes					
At the end of th	e course, the students will be able to:					
1. Use the	Multimeter, Power supplies, Oscilloscopes and Function C	Jene	rate	ors.		
2. Analyse	the Characteristics of Semiconductors such as diode, BJT	and	FE	Та	nd i	ts
configu	ation.					
3. Analyse	the pulse generation using 555 timers.					
List of Experim	nents					
1. Identification	on, Study and Testing of various electronic components, de	evice	es a	nd	softv	vare
tools:						
a. Passive com like BJTs, F	ponents like Resistors, Capacitors, Variable Resistor/Pot; ETs, UJTs.	Acti	vec	om	pone	ents
b. Instruments	/Devices like Multimeter, Ammeter, Voltmeter, FG, RPS,	CR	D (A	Ana	loga	nd
Digital Stor	age), Breadboard, Transformer, PCB, Soldering Kit, probe	s, C	able	es,	-	
Connectors,	Battery types, Relays (Mechanical and Electronic)					
2. Study of a L	Digital Storage CRO and store a signal on it software tool					
3. Plot V-I cha	racteristic of P-N junction diode using breadboard					
4. Transistor C	Tharacteristics					
a. Plot I/O cha	racteristics of BJT in CE/CB/CC configuration.					
b. Plot the cha	racteristics of FET					
5. Design a bia	using circuit for BJT. Use breadboard					
6. Amplifiers -	Plot frequency response of BJT CE amplifier with and w/	o ne	egat	ive		
f/busing bre	adboard					
7. Plot the cha	racteristics of UJT and UJT as relaxation. Use breadboard					
8. Oscillators,	Pulse Generators					
a. Design of M	Ionostable Multivibrator using 555 Timers					
b. Design of A	stable Multivibrator using 555 Timers					
9. Power Supp	lies					
a. Study Zener	diode as voltage regulator. Observe the effect of load chan	nges	and	dde	term	nne
load limits	of the voltage regulator. Use breadboard.					
b. Design a Br	idge rectifier and measure the effect of filter network					
10. Chipper and	Clamper circuit design its analysis					
1 http://	S					
1. $\operatorname{nttp://W}$	ww.seniex.ca/~inec1995/tutorial/xtor/xtoro/xtoro.ntml	tio-				
2. Practica	/Electionics Handbook, ran Sinciair, John Dunton, 6" Edi	uon	,			
3 Storting	Electronics Keith Brindley Ath Edition Newnes/Electronics					
5. Starting	Licentines, Kenn Drinney, 4° Euron, Newnes/Elsevier					

DIGITAL ELECTRONICS LABORATORY WITH HDL

L	Т	Р	С
0	0	2	1

Course Objectives

To familiarize the students with

- Students can design digital circuits using a hardware description language and synthesis.
- Students understand modern programmable logic devices and can use them in practical applications.

Course Outcomes

On completion of the course, students should be able to

- 1. Apply and implement the learned algorithm for problem solving
- 2. Identify the data structure to develop program for real time applications
- 3. Design and develop optimal algorithms using appropriate data structures

1. Study of simulation tools

- 2. Study of synthesis tools, Study of FPGA board
- 3. Simulation of simple digital circuit using Verilog HDL/VHDL
- 4. Simulation of 4-bit multiplier, 8 bit adder, Accumulator/Calculator (Addition, Subtraction and Multiplication of 2's complement numbers)
- 5. Simulation of Multiplexer, Address decoder
- 6. Simulation of Clock generator
- 7. Simulation of Edge Triggered Data Flip Flop
- 8. Simulation of 2 bit counter as a FSM
- 9. Simulation of 4/8 bit Barrel shifter, 8 bit Parallel to serial converter (with a 'go' bit forstart of transmission)
- 10. Simulation of PRBS generator, Memory unit
- 11. Verification of the Functionality designed in experiment 10 with test bench
- 12. Synthesis of the (experiment 9) design and power, timing analysis of the synthesized design on an FPGA

Total Hours: 30

Reference Books

- 1. Practical Electronics Handbook, Ian Sinclair, John Dunton, 6th Edition, Newnes/Elsevier, 2013.
- 2. Verilog HDL: A Guide to Digital Design and Synthesis, Samir Palnitkar, PHI, 2009
- 3. VHDL: Programming by Example, Douglas L. Perry, TMH
- 4. Digital Design with RTL Design, Verilog and VHDL, Frank Vahid, 2nd Edition, Wiley

2105		L	Т	P	С
2105	EFS DATA SIKUCTURES LADURATURI	0	0	2	1
Course	Objectives				
The cour	se aims:				
• 7	o implement linear and non-linear data structures				
• 7	o implement non-linear data structures				
• 7	o understand the different operations of search trees				
• 7	o implement graph traversal algorithms				
• 1	o get familiarized to sorting and searching algorithms				
Course	Dutcomes				
On comp	eletion of the course, students should be able to				
1. A	apply and implement the learned algorithm for problem solving				
2. I	lentify the data structure to develop program for real time application	ation	S		
3. I	besign and develop optimal algorithms using appropriate data stru	uctur	es		
1	TIVE LIST OF EXPERIMENTS (Using C):				
1. F	rray and Linked list implementation of Stack ADT.				
2. F 2 /	rray and Linked list implementation of Quaua ADT.				
3. F	nay and Linked list implementation of Queue ADT.				
4. F	pplications of List, Stack and Queue ADTS.				
J. 1 6 I	mplementation of Dinary Gearch Trace				
	mplementation of AVL Trees.				
/. I	inplementation of Hoong using Priority Outputs				
0. I	Inplementation of frequencies using Priority Queues.				
9. C	naph representation and Traversal algorithms.				

- 10. Applications of Graphs.
- 11. Implementation of searching and sorting algorithms.
- 12. Hashing any two collision techniques.

Total Hours: 30

Reference Books

- 1. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures, Galgotia Book Source, Gurgon, 1976.
- 2. Gregory L. Heilman, Data Structures, Algorithms and Object Oriented Programming, Tata Mcgraw-Hill, New Delhi, 2002.

21ECE05

ANALOG AND DIGITAL COMMUNICATION

Course Objectives

- To analyze techniques for the generation, transmission and reception of amplitude modulation, frequency modulation and phase modulation signals
- To gain knowledge of various pulse modulation techniques and the corresponding demodulation techniques
- To understand various digitization techniques, generation, and reconstruction of PCM, DPCM and DM
- To gain knowledge in various band pass digital transmission

Course Outcomes

At the end of the course student will be able

- 1. Understand about fundamentals of Analog communication
- 2. Understand the concepts of FM, PM with its transmitter.
- 3. Explain Pulse modulation techniques
- 4. Demonstrate all digitalization techniques
- 5. Demonstrate digital modulation techniques

Unit 1 - Fundamentals of Analog Communication Systems

Introduction to Communication Systems: Modulation - Types - Need for Modulation. Theory of Amplitude Modulation -DSB Signals and Spectra, Suppressed Side Band Amplitude Modulation - Single Side Band Signals and Spectra, Single Side Band Generation, Vestigial Side Band Signals and Spectra, Illustrative Problems.

Unit 2 – Angle Modulation

Principle of frequency and phase modulation-Relation between FMand PM waves-Bandwidth of FM-Narrow band and wideband FM-Generation of FM wave Direct and Indirect methods-FM transmitters-Block diagram-Function of each block-FM Receiver

Unit 3 - Pulse Modulation Techniques

Pulse amplitude modulation – Flat top sampling and Pulse amplitude modulation (PAM), PAM Transmitter and Receiver-Pulse-Time Modulation - Pulse Duration and Pulse Position modulations, PPM spectral analysis, Illustrative Problems.

Unit 4 - Digitization Techniques

Pulse Code Modulation (PCM) - Generation and Reconstruction, Quantization Noise, Non-Uniform Quantization and Companding, PCM with Noise, Delta modulation, Modulation, Differential Digital Adaptive Delta PCM systems (DPCM), Multiplexing-Multiplexers and Hierarchies

Unit 5 - Band Pass Digital Transmission

Coherent ASK (OOK (on-off keying)), FSK, PSK, QAM, Quadrature Carrier and M-ary Systems- M-ary FSK Systems, M-ary PSK Systems, M-ary QAM Systems, Timing and Synchronization, Interference, Non-Coherent Binary Systems, Non-Coherent FSK, Differentially Coherent PSK, Optimum Binary Detection.

Unit 6 – Recent Trends

Total Hours: 45

Text Books

1. Bruce Carlson, & Paul B. Crilly, "Communication Systems - An Introduction to Signals & Noise in Electrical Communication", McGraw-Hill International Edition, 5th

9

8

Q

9

Edition, 2010

- 2. Simon Haykin, "Communication Systems", Wiley-India edition, 3rd edition, 2010
- 3. B. P. Lathi and Z. Ding, Modern Digital and Analog Communication Systems, 4th Edition, Oxford University Press, 2011.

- 1. Sam Shanmugam, "Digital and Analog Communication Systems", John Wiley, 2005
- 2. J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering, Wiley, 1965.
- 3. J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication, 3rd Edition, Springer, 2004.
- 4. Taub and Schilling, "Principles of Communication Systems", 2nd ed., Mc-Graw Hill
- 5. V Chandra Sekar, "Analog Communication", Oxford University Press
- 6. G.B.Gustafson& C.H. Wilcox, "Advanced Engineering Mathematics", Springer Verlag, 1998.

21ECE06	NETWORK THEORY	,	<u>Т</u>	P o	C 2
Course Obiec	tives J		U	U	3
To far	iliarise the students with				
• Electri	circuits and networks. Resonance of circuits				
Couple	d circuits and their characteristics				
• First o	der transients and sinusoidal steady state analysis				
• Electri	e network models and parameters				
• Synthe	sis a network from its equation				
Course Outco	mes				
At the end of t	ne course student will be able				
1. Explain cor	cepts in graphical model used for description of electric netw	/0	rks.		
2. Apply the t	asic network theorems to simplify, analyse and design large-	sc	ale N	etwo	rks
3. Compute th	e impedance, resonance and responses for RLC circuits				
4. Derive nety	ork parameters for two-port networks				
5. Synthesize	one-port and two-port networks				
Init 1 - Netw	ork Basics and Theorems				9
Flements and	sources – Graph of a network - Tree and Co-tree – Tw	ia	e and	l lin	, ,
Matricos asso	isted with graphs: incidence, fundamental out set and fund	1g 10	s and		13 - i
matrices asso	ality Linearity and non linearity. Distributed and Lymp	Ja			Cui
$P_{aviow} \circ f N_{av}$	anty - Linearity and non-linearity – Distributed and Lump work Theorems (DC, AC) – Poview of steady state AC analy		i para	imete	
	work Theorems (DC, AC) – Review of steady state AC analy	/ 51	C		
Unit 2 Dega	ones Counted Circuits		.s.		o
Unit 2 - Reson Series, Paralle impedance wi Conductively coupling – Ide	ance, Coupled Circuits I Resonance – Resonant frequency for a tank circuit th frequency – Bandwidth, Q factor of series and parall coupled circuits – Mutual Inductance – Dot convention – al Transformer – Tuned circuits.	_ lel	Vari resc Coeff	iation onanc icier	8 1 0 2e - 1t 0
Unit 2 - Reson Series, Paralle impedance with Conductively coupling – Ide	ance, Coupled Circuits 1 Resonance – Resonant frequency for a tank circuit 1 th frequency – Bandwidth, Q factor of series and parall 1 coupled circuits – Mutual Inductance – Dot convention – 1 Transformer – Tuned circuits.	_ lel	s. Vari reso Coeff	ation onance icier	8 n oi ce - it oi
Unit 2 - Reson Series, Paralle impedance with Conductively coupling – Ide Unit 3 – Tran Transients (D networks - Tra	aance, Coupled Circuits A Resonance – Resonant frequency for a tank circuit th frequency – Bandwidth, Q factor of series and parall coupled circuits – Mutual Inductance – Dot convention – al Transformer – Tuned circuits. sients C, AC) of RL, RC and RLC networks – Time domain a nsmission criteria: Delay and rise time, Elmore's and other d	– lel – 0 na	S. Vari resc Coeff ilysis initio	iation onanc icier of I ns.	8 n o: ce - it o: 8 RLC
Unit 2 - Reson Series, Paralle impedance with Conductively coupling – Ide Unit 3 – Tran Transients (D networks - Tran	Hance, Coupled Circuits A Resonance – Resonant frequency for a tank circuit th frequency – Bandwidth, Q factor of series and parall coupled circuits – Mutual Inductance – Dot convention – al Transformer – Tuned circuits. Sients C, AC) of RL, RC and RLC networks – Time domain a nsmission criteria: Delay and rise time, Elmore's and other d	_ lel _ 0 na ef	Vari resc Coeff lysis initio	ation onanc icien of I ns.	8 1 0 2 2 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
Unit 2 - Reson Series, Paralla impedance with Conductively coupling – Ide Unit 3 – Tran Transients (D networks - Tran Unit 4 - Netwe Two port networks.	 ance, Coupled Circuits Al Resonance – Resonant frequency for a tank circuit th frequency – Bandwidth, Q factor of series and parall coupled circuits – Mutual Inductance – Dot convention – al Transformer – Tuned circuits. sients C, AC) of RL, RC and RLC networks – Time domain a nsmission criteria: Delay and rise time, Elmore's and other d Ork Parameters vork parameters – Conversion between parameters – Latt n of two–port networks – T and PI representation – Term 	- lel - (na ef	Vari Vari reso Coeff llysis initio e Net ated	ation onanc icien of I ns. twor two	8 1 0 1 0 1 0 8 8 8 8 8 8 8 8 8 8 8 8 8
Unit 2 - Reson Series, Parall- impedance wi Conductively coupling – Ide Unit 3 – Tran Transients (D networks - Tra Unit 4 - Netw Two port networks.	 ance, Coupled Circuits A Resonance – Resonant frequency for a tank circuit A frequency – Bandwidth, Q factor of series and parall coupled circuits – Mutual Inductance – Dot convention – al Transformer – Tuned circuits. sients C, AC) of RL, RC and RLC networks – Time domain a nsmission criteria: Delay and rise time, Elmore's and other d Ork Parameters vork parameters – Conversion between parameters – Latt n of two–port networks – T and PI representation – Term 	- lel - 0 na ef	S. Vari resc Coeff initio e Net ated	ation onanc icier of I ns. twor two	8 n o xe - t o 8 8 RLC 9 ks - por
Unit 2 - Reson Series, Paralli impedance with Conductively coupling – Ide Unit 3 – Tran Transients (D networks - Tran Unit 4 - Netw Two port networks. Unit 5 - Comp Hurwitz polyn Synthesis of I networks.	 ance, Coupled Circuits Al Resonance – Resonant frequency for a tank circuit th frequency – Bandwidth, Q factor of series and parall coupled circuits – Mutual Inductance – Dot convention – al Transformer – Tuned circuits. sients C, AC) of RL, RC and RLC networks – Time domain a nsmission criteria: Delay and rise time, Elmore's and other d brk Parameters vork parameters – Conversion between parameters – Latter of two–port networks – T and PI representation – Term bensator Design benials – Positive real function – Synthesis of one port, two RL and RC networks by Foster and Cauer Methods –Stat 	- lel - 0 na ef icon in	Vari reso Coeff lysis initio e Net ated	of Ins. twor twor tions	8 1 0 2 1 0 8 8 8 8 8 8 8 8 8 8 8 8 8
Unit 2 - Reson Series, Parall- impedance w: Conductively coupling – Ide Unit 3 – Tran Transients (D networks - Tra Unit 4 - Netw Two port networks - Two port networks. Unit 5 - Comp Hurwitz polyn Synthesis of 1 networks.	 ance, Coupled Circuits A Resonance – Resonant frequency for a tank circuit th frequency – Bandwidth, Q factor of series and parall coupled circuits – Mutual Inductance – Dot convention – al Transformer – Tuned circuits. sients C, AC) of RL, RC and RLC networks – Time domain a nsmission criteria: Delay and rise time, Elmore's and other d ork Parameters work parameters – Conversion between parameters – Latt n of two–port networks – T and PI representation – Term pensator Design pomials – Positive real function – Synthesis of one port, two RL and RC networks by Foster and Cauer Methods –Stat 	- lel - o na ef iconin pote	S. Vari resc Coeff ilysis initio e Net ated	of Ins. tworttions	8 n o: xe - t o: 8 8 RLC 9 ks - por ks - for 2
Unit 2 - Reson Series, Paralli impedance w: Conductively coupling – Ide Unit 3 – Tran Transients (D networks - Tra Unit 4 - Netw Two port netv Interconnection networks. Unit 5 - Comp Hurwitz polyn Synthesis of I networks. Unit 6 – Conto	Ance, Coupled Circuits A Resonance – Resonant frequency for a tank circuit th frequency – Bandwidth, Q factor of series and parall coupled circuits – Mutual Inductance – Dot convention – al Transformer – Tuned circuits. Sients C, AC) of RL, RC and RLC networks – Time domain a nsmission criteria: Delay and rise time, Elmore's and other d ork Parameters work parameters – Conversion between parameters – Latt n of two–port networks – T and PI representation – Term pensator Design omials – Positive real function – Synthesis of one port, two RL and RC networks by Foster and Cauer Methods –Stat mporary issues	- lel - 0 naef iconin te	Vari Vari reso Coeff llysis initio e Net ated	of Ins. twor twor tions	8 1 0 2 1 0 8 8 RLC 9 ks - por ks - for 2
Unit 2 - Reson Series, Parall- impedance w: Conductively coupling – Ide Unit 3 – Tran Transients (D networks - Tra Unit 4 - Netw Two port networks - Two port networks. Unit 5 - Comp Hurwitz polyn Synthesis of 1 networks. Unit 6 – Conto Text Backs	Aance, Coupled Circuits A Resonance – Resonant frequency for a tank circuit th frequency – Bandwidth, Q factor of series and parall coupled circuits – Mutual Inductance – Dot convention – al Transformer – Tuned circuits. Sients C, AC) of RL, RC and RLC networks – Time domain a nsmission criteria: Delay and rise time, Elmore's and other d ork Parameters work parameters – Conversion between parameters – Latt n of two–port networks – T and PI representation – Term pensator Design omials – Positive real function – Synthesis of one port, two RL and RC networks by Foster and Cauer Methods –Stat mporary issues Total Hours: 4	_ lel _ na ef iconin pote	Vari Vari reso Coeff llysis initio e Net ated	of Ins. tworftions	8 n o ce - it o 8 RL(9 ks - por ks - fo 2

- 2. Sudhakar, S. P. Shyammohan, Circuits and Networks, TMH, 4th Edition 2010.
- 3. M.S. Sukhija and T.N. Nagsarkar, "Circuits and Networks: Analysis, Design and Synthesis", Oxford University Press India, 2016,

- 1. Valkenburg M.E.Van, Network Analysis, PHI, 3rd Edition, 2009
- 2. Franklin F.Kuo, Network Analysis and Synthesis, Wiley India, 2nd Edition, 2009
- 3. B. R. Gupta, Vandana Singhal, Fundamentals of Electrical Networks, S. Chand Publishers, 2005
- 4. Aatre, Vasudev K., Network Theory and Filter Design, 3rd Edition, 2014
- 5. Syed Nasar, 3,000 Solved Problems in Electric Circuits, TMH, 2010

Course Objectives 1010100 • To gain knowledge on vector calculus • To gain knowledge on vector calculus • To gain knowledge on different applications of electromagnetic fields • To acquire knowledge on Electromagnetic Fields in various Materials • To understand about Maxwell's equations in various forms Course Outcomes At the end of the course student will be able 1. Relate vector calculus to electrostatic fields and infer the behavior of static electric field of various Geometries. 2. Summarize the applications of Electrostatics 3. Explore the knowledge in magneto statics fields and its applications. 4. Infer knowledge about electromagnetic fields in various materials and Boundary conditions. 5. Extract the Maxwell's equation in different forms to determine field waves, potential waves, Energy and Charge conservation conditions. Unit 1 - Electrostatic Fields 9 Vector Calculus - Scalar and Vector fields - Coordinate Systems and Transformation, Del - Gradient of a Scalar-Divergence of a Vector and Divergence Theorem-Curl of a Vector and Stokes Theorem, Coulombs Law - Coulombs Law in Vector Form - Electric Field Intensity - Electric Field ue to discrete charges. electric fields due to opiont, line, surface and volume charge distributions - Electric files due to noint, line, surface and volume charge distributions - capacitance - Dielectric interface Capacitance of system of conductors - Dielectric constant and Dielectric istrength - Energy stored in capacitor - Energy density. <th>21ECE07</th> <th>ENGINEERING ELECTROMAGNETICS</th> <th>L 3</th> <th>T 0</th> <th>P 0</th> <th>C 3</th>	21ECE07	ENGINEERING ELECTROMAGNETICS	L 3	T 0	P 0	C 3
 To gain knowledge on vector calculus To acquire knowledge of various static electric and magnetic fields To gain knowledge on different applications of electromagnetic fields To understand about Maxwell's equations in various Materials To understand about Maxwell's equations in various forms Course Outcomes At the end of the course student will be able 1. Relate vector calculus to electrostatic fields and infer the behavior of static electric field of various Geometries. 2. Summarize the applications of Electrostatics 3. Explore the knowledge in magneto statics fields and its applications. 4. Infer knowledge about electromagnetic fields in various materials and Boundary conditions. 5. Extract the Maxwell's equation in different forms to determine field waves, potential waves, Energy and Charge conservation conditions. 9 Vector Calculus - Scalar and Vector fields - Coordinate Systems and Transformation, Del Gradient of a Scalar-Divergence of a Vector and Divergence Horerom-Curl of a Vector and Stokes Theorem, Coulombs Law - Coulombs Law in Vector Form - Electric Field Intensity - Electric Field due to discrete charges. electric fields due to point, line, surface and volume charge distributions - Electric flux density - Gauss law - Electric potential - potential gradient Poisson's and Laplace equations. Unit 2 - Electrostatic Applications - capacitance - Dielectric interface - Capacitance of system of conductors - Dielectric constant and Dielectric strength - Energy stored in capacitor - Energy density. Unit 3 - Magnetostatics Fields 8 Biot - Savart Law and Field Intensity on the axis of a circular loop carrying a current - Magnetic Field linensity on the axis of a circular loop carrying a current - Magnetic Field linensity on the axis of a circular loop carrying a current - Magnetic Field Intensity - Outpore carying a current - Magnetic Field Intensity on the	Course Objec	tives	5	U	U	5
Course Outcomes At the end of the course student will be able 1. Relate vector calculus to electrostatic fields and infer the behavior of static electric field of various Geometries. 2. Summarize the applications of Electrostatics 3. Explore the knowledge in magneto statics fields in various materials and Boundary conditions. 4. Infer knowledge about electromagnetic fields in various materials and Boundary conditions. 5. Extract the Maxwell's equation in different forms to determine field waves, potential waves, Energy and Charge conservation conditions. Unit 1 - Electrostatic Fields 9 Vector Calculus - Scalar and Vector fields - Coordinate Systems and Transformation, Del - Gradient of a Scalar-Divergence of a Vector and Divergence Theorem-Curl of a Vector and Stokes Theorem, Coulombs Law - Coulombs Law in Vector Form - Electric Field Intensity - Electric Field due to discrete charges, electric fields due to point, line, surface and volume charge distributions – Electric flux density – Gauss law – Electric rost and Dielectrics - Boundary conditions – capacitance – Dielectric interface – Capacitance of system of conductors and Dielectrics - Boundary conditions – capacitance – Dielectric interface – Capacitance of system of conductors – Dielectric constant and Dielectric strength - Energy stored in capacitance infinite inter current-infinite Sheet of current infinitely long coaxial transmission line. Magnetic Potential Poores Magnetic Flux Density. Unit 3 - Magnetic Field Intensity - Magnetic Field intensity due to a finite and infinite wire carrying a current - Magnetic field intensity on the axis of a circular loop carrying a current - Magnetic Flux Density. <td> To gain know To acquire To gain know To acquire To acquire To understa </td> <td>owledge on vector calculus knowledge of various static electric and magnetic fields owledge on different applications of electromagnetic fields knowledge on Electromagnetic Fields in various Materials and about Maxwell's equations in various forms</td> <td>5</td> <th></th> <td></td> <td></td>	 To gain know To acquire To gain know To acquire To acquire To understa 	owledge on vector calculus knowledge of various static electric and magnetic fields owledge on different applications of electromagnetic fields knowledge on Electromagnetic Fields in various Materials and about Maxwell's equations in various forms	5			
At the end of the course student will be able 1. Relate vector calculus to electrostatic fields and infer the behavior of static electric field of various Geometries. 2. Summarize the applications of Electrostatics 3. Explore the knowledge in magneto statics fields and its applications. 4. Infer knowledge about electromagnetic fields in various materials and Boundary conditions. 5. Extract the Maxwell's equation in different forms to determine field waves, potential waves, Energy and Charge conservation conditions. 5. Extract the Maxwell's equation in different forms to determine field waves, potential waves, Energy and Charge conservation conditions. 5. Extract the Maxwell's equation in different forms to determine field waves, potential waves, Energy and Charge conservation conditions. 5. Unit 1 - Electrostatic Fields 9 Vector Calculus - Scalar and Vector fields - Coordinate Systems and Transformation, Del - Gradient of a Scalar-Divergence of a Vector and Divergence Theorem-Curl of a Vector and Stokes Theorem, Coulombs Law - Coulombs Law in Vector Form - Electric Field Intensity - Electric Field due to discrete charges. electric fields due to point, line, surface and volume charge distributions – Electric flux density – Gauss law – Electric potential – potential gradient -Poisson's and Laplace equations. 4. Unit 2 - Electrostatic Applications 8 Field due to dipoles – dipole moment – Current and current density – Conductors and Dielectrics - Boundary conditions – capacitance – Dielectric interface – Capacitance of system of conductors – Dielectric field intensity due to a finite and infinite wire carrying a current - Magnetic Field Intensity on the axis of a circular loop carrying a current - Amperes Circuital Law - Applications - infinite line current-infinite sheet of current Element-Force between Two Current Elements. Magnetic Torque and moment Magnetic dipole - Magnetic field and Devices 9 Forces due to magnetic field - Lorentz force equation for a moving charge- Force on a Current Element-Force be	Course Outco	mes				
 Infer knowledge about electromagnetic fields in various materials and Boundary conditions. Extract the Maxwell's equation in different forms to determine field waves, potential waves, Energy and Charge conservation conditions. Unit 1 - Electrostatic Fields 9 Vector Calculus - Scalar and Vector fields - Coordinate Systems and Transformation, Del - Gradient of a Scalar-Divergence of a Vector and Divergence Theorem-Curl of a Vector and Stokes Theorem, Coulombs Law - Coulombs Law in Vector Form - Electric Field Intensity - Electric Field due to discrete charges, electric fields due to point, line, surface and volume charge distributions – Electric flux density – Gauss law – Electric potential – potential gradient –Poisson's and Laplace equations. Unit 2 - Electrostatic Applications 8 Field due to dipoles – dipole moment – Current and current density – Conductors and Dielectrics - Boundary conditions – capacitance – Dielectric interface – Capacitance of system of conductors – Dielectric constant and Dielectric strength - Energy stored in capacitor – Energy density. Unit 3 - Magnetostatics Fields 8 Biot - Savart Law and Field Intensity - Magnetic Field intensity due to a finitie and infinite wire carrying a current - Magnetic field intensity on the axis of a circular loop carrying a current - Magnetic Flux Density. Unit 4 - Magnetic Forces, Materials and Devices 9 Forces due to magnetic field. Lorentz force equation for a moving charge- Force on a Current Element-Force between Two Current Elements. Magnetic Torque and moment-Magnetic dipole - Magnetization in materials – Classification of Magnetic materials – magnetic boundary conditions – Inductors - inductores – magnetic energy stored in inductors. Unit 5 - Time Varying Electromagnetic Fields 9 Maxwell's Equations - Faradays Law - Displacement Curr	At the end of t 1. Relate vector of various (2. Summarize 3. Explore the	he course student will be able or calculus to electrostatic fields and infer the behavior of Geometries. the applications of Electrostatics knowledge in magneto statics fields and its applications.	statio	c elect	ric fi	ield
 Conditions. Extract the Maxwell's equation in different forms to determine field waves, potential waves, Energy and Charge conservation conditions. Unit 1 - Electrostatic Fields Vector Calculus - Scalar and Vector fields - Coordinate Systems and Transformation, Del-Gradient of a Scalar-Divergence of a Vector and Divergence Theorem-Curl of a Vector and Stokes Theorem, Coulombs Law - Coulombs Law in Vector Form - Electric Field Intensity - Electric Field due to discrete charges. electric fields due to point, line, surface and volume charge distributions – Electric flux density – Gauss law – Electric potential – potential gradient –Poisson's and Laplace equations. Unit 2 - Electrostatic Applications Field due to dipoles – dipole moment – Current and current density – Conductors and Dielectrics - Boundary conditions – capacitance – Dielectric interface – Capacitance of system of conductors – Dielectric constant and Dielectric strength - Energy stored in capacitor – Energy density. Unit 3 - Magnetostatics Fields 8 Biot - Savart Law and Field Intensity - Magnetic Field intensity due to a finite and infinite wire carrying a current - Magnetic field intensity on the axis of a circular loop carrying a current - Magnetic field intensity on the axis of a circular loop carrying a current - Magnetic Flux Density. Unit 4 - Magnetic Forces, Materials and Devices 9 Forces due to magnetic field - Lorentz force equation for a moving charge- Force on a Current Element-Force between Two Current Elements. Magnetic materials – magnetic boundary conditions – Inductors - inductances – magnetic energy stored in inductors. Unit 5 - Time Varying Electromagnetic Fields 9 Maxwell's Equations - Faradays Law - Displacement Current – Maxwell's Equations in integral form and differential form - Time-Varying Potentials. Wave Propagation-Helmholtz wave E	4. Infer know	ledge about electromagnetic fields in various materials and	ΙΒοι	undary	1	
Writes, Eulertorstatic Fields 9 Vector Calculus - Scalar and Vector fields - Coordinate Systems and Transformation, Del - Gradient of a Scalar-Divergence of a Vector and Divergence Theorem-Curl of a Vector and Stokes Theorem, Coulombs Law - Coulombs Law in Vector Form - Electric Field Intensity - Electric Field due to discrete charges. electric fields due to point, line, surface and volume charge distributions – Electric flux density – Gauss law – Electric potential – potential gradient –Poisson's and Laplace equations. 8 Field due to dipoles – dipole moment – Current and current density – Conductors and Dielectrics - Boundary conditions – capacitance – Dielectric interface – Capacitance of system of conductors – Dielectric constant and Dielectric strength - Energy stored in capacitor – Energy density. 8 Biot - Savart Law and Field Intensity - Magnetic Field intensity due to a finite and infinite wire carrying a current - Magnetic field intensity on the axis of a circular loop carrying a current - Magnetic Flux Density. 8 Unit 4 - Magnetic Forces, Materials and Devices 9 Forces due to magnetic field - Lorentz force equation for a moving charge- Force on a Current Element-Force between Two Current Elements. Magnetic Torque and moment-Magnetic dipole - Magnetization in materials – Classification of Magnetic materials – magnetic energy stored in inductors. 9 Maxwell's Equations - Fields 9 Maxwell's Equations - Fradays Law - Displacement Current – Maxwell's Equations in integral form and differential form - Time-Varying Potentials. Wave Propagation-Helmholtz wave Equation-wave motion in free space- perfect dielectric - lossy dielectr	5. Extract the	Maxwell's equation in different forms to determine field w	vave	s, pote	entia	1
Outron A International Vector fields - Coordinate Systems and Transformation, Del - Gradient of a Scalar and Vector fields - Coordinate Systems and Transformation, Del - Gradient of a Scalar-Divergence of a Vector and Divergence Theorem-Curl of a Vector and Stokes Theorem, Coulombs Law - Coulombs Law in Vector Form - Electric Field Intensity - Electric Field due to discrete charges. electric fields due to point, line, surface and volume charge distributions - Electric flux density - Gauss law - Electric potential - potential gradient -Poisson's and Laplace equations. Unit 2 - Electrostatic Applications 8 Field due to dipoles - dipole moment - Current and current density - Conductors and Dielectrics - Boundary conditions - capacitance - Dielectric interface - Capacitance of system of conductors - Dielectric constant and Dielectric strength - Energy stored in capacitor - Energy density. Unit 3 - Magnetostatics Fields 8 Biot - Savart Law and Field Intensity - Magnetic Field intensity due to a finite and infinite wire carrying a current - Magnetic field intensity on the axis of a circular loop carrying a current - Amperes Circuital Law - Applications - infinite line current-infinite sheet of eurent-infinitely long coaxial transmission line. Magnetic Potential-Magnetic Scalar and Vector Potentials - Magnetic Flux Density. 9 Forces due to magnetic field - Lorentz force equation for a moving charge- Force on a Current Element-Force between Two Current Elements. Magnetic Torque and moment-Magnetic dipole - Magnetization in materials - Classification of Magnetic materials - magnetic boundary conditions - Inductors - inductances - magnetic energy stored in inductors. <	Unit 1 - Electu	rostatic Fields			9	
Unit 2 - Electrostatic Applications 8 Field due to dipoles – dipole moment – Current and current density – Conductors and Dielectrics - Boundary conditions – capacitance – Dielectric interface – Capacitance of system of conductors – Dielectric constant and Dielectric strength - Energy stored in capacitor – Energy density. Unit 3 - Magnetostatics Fields 8 Biot - Savart Law and Field Intensity - Magnetic Field intensity due to a finite and infinite wire carrying a current - Magnetic field intensity on the axis of a circular loop carrying a current - Amperes Circuital Law - Applications - infinite line current-infinite sheet of current-infinitely long coaxial transmission line. Magnetic Potential-Magnetic Scalar and Vector Potentials - Magnetic Flux Density. 9 Forces due to magnetic field - Lorentz force equation for a moving charge- Force on a Current Element-Force between Two Current Elements. Magnetic Torque and moment-Magnetic dipole - Magnetization in materials – Classification of Magnetic materials — magnetic boundary conditions – Inductors - inductances – magnetic energy stored in inductors. 9 Mit 5 - Time Varying Electromagnetic Fields 9 Maxwell's Equations - Faradays Law - Displacement Current – Maxwell's Equations in integral form and differential form - Time-Varying Potentials. Wave Propagation-Helmholtz wave Equation-wave motion in free space- perfect dielectric - lossy dielectric and good conductor- Skin effect. Poynting vector and power considerations. 2 Total Hours: 45	Vector Calculu Gradient of a and Stokes Th Intensity - Ele and volume ch potential gradi	is - Scalar and Vector fields - Coordinate Systems and Tra Scalar-Divergence of a Vector and Divergence Theorem neorem, Coulombs Law - Coulombs Law in Vector For ctric Field due to discrete charges. electric fields due to marge distributions – Electric flux density – Gauss law – I ent –Poisson's and Laplace equations	ansfo n-Cu m - poin Elect	rmation rl of a Electa t, line tric po	on, I a Ve ric F , sur otenti	Del - ector Field face fal –
Field due to dipoles – dipole moment – Current and current density – Conductors and Dielectrics - Boundary conditions – capacitance – Dielectric interface – Capacitance of system of conductors – Dielectric constant and Dielectric strength - Energy stored in capacitor – Energy density. Unit 3 - Magnetostatics Fields 8 Biot - Savart Law and Field Intensity - Magnetic Field intensity due to a finite and infinite wire wire carrying a current - Magnetic field intensity on the axis of a circular loop carrying a current - Amperes Circuital Law - Applications - infinite line current-infinite sheet of current - Infinitely long coaxial transmission line. Magnetic Potential-Magnetic Scalar and Vector Potentials - Magnetic Flux Density. Unit 4 - Magnetic Forces, Materials and Devices 9 Forces due to magnetic field- Lorentz force equation for a moving charge- Force on a Current Element-Force between Two Current Elements. Magnetic materials — Magnetic dipole - Magnetization in materials – Classification of Magnetic materials — magnetic boundary conditions – Inductors - inductances – magnetic energy stored in inductors. Unit 5 - Time Varying Electromagnetic Fields 9 Maxwell's Equations - Faradays Law - Displacement Current – Maxwell's Equations in integral form and differential form - Time-Varying Potentials. Wave Propagation-Helmholtz wave Equation-wave motion in free space- perfect dielectric - lossy dielectric and good conductor- Skin effect. Poynting vector and power consid	Unit 2 - Elect	rostatic Annlications			8	
Unit 3 - Magnetostatics Fields8Biot - Savart Law and Field Intensity - Magnetic Field intensity due to a finite and infinite wire carrying a current - Magnetic field intensity on the axis of a circular loop carrying a current - Amperes Circuital Law - Applications - infinite line current-infinite sheet of current-infinitely long coaxial transmission line. Magnetic Potential-Magnetic Scalar and Vector Potentials - Magnetic Flux Density.9Unit 4 - Magnetic Forces, Materials and Devices9Forces due to magnetic field- Lorentz force equation for a moving charge- Force on a Current Element-Force between Two Current Elements. Magnetic Torque and moment- Magnetic boundary conditions – Inductors - inductances – magnetic energy stored in inductors.Unit 5 - Time Varying Electromagnetic Fields9Maxwell's Equations - Faradays Law - Displacement Current – Maxwell's Equations in integral form and differential form - Time-Varying Potentials. Wave Propagation- Helmholtz wave Equation-wave motion in free space- perfect dielectric - lossy dielectric and good conductor- Skin effect. Poynting vector and power considerations.Unit 6 -Contemporary issues2Total Hours: 45Text Books1. Matthew Sadiku, 'Elements of Electromagnetics', Oxford University Publication, 2018	Field due to c Dielectrics - H system of cor capacitor – En	lipoles – dipole moment – Current and current density Boundary conditions – capacitance – Dielectric interface aductors – Dielectric constant and Dielectric strength - ergy density.	– C – C Ene	onduc Capaci ergy s	tors tance store	and e of d in
Biot - Savart Law and Field Intensity - Magnetic Field intensity due to a finite and infinite wire carrying a current - Magnetic field intensity on the axis of a circular loop carrying a current - Amperes Circuital Law - Applications - infinite line current-infinite sheet of current-infinitely long coaxial transmission line. Magnetic Potential-Magnetic Scalar and Vector Potentials - Magnetic Flux Density. Unit 4 - Magnetic Forces, Materials and Devices 9 Forces due to magnetic field- Lorentz force equation for a moving charge- Force on a Current Element-Force between Two Current Elements. Magnetic Torque and moment- Magnetic dipole - Magnetization in materials – Classification of Magnetic materials — magnetic boundary conditions – Inductors - inductances – magnetic energy stored in inductors. Unit 5 - Time Varying Electromagnetic Fields Maxwell's Equations - Faradays Law - Displacement Current – Maxwell's Equations in integral form and differential form - Time-Varying Potentials. Wave Propagation- Helmholtz wave Equation-wave motion in free space- perfect dielectric - lossy dielectric and good conductor- Skin effect. Poynting vector and power considerations. Unit 6 -Contemporary issues 2 Total Hours: 45 Text Books 1. Matthew Sadiku, 'Elements of Electromagnetics', Oxford University Publication, 2018	Unit 3 - Magn	etostatics Fields			8	
Unit 4 - Magnetic Forces, Materials and Devices9Forces due to magnetic field- Lorentz force equation for a moving charge- Force on a Current Element-Force between Two Current Elements. Magnetic Torque and moment- Magnetic dipole - Magnetization in materials – Classification of Magnetic materials – magnetic boundary conditions – Inductors - inductances – magnetic energy stored in inductors.Unit 5 - Time Varying Electromagnetic Fields9Maxwell's Equations - Faradays Law - Displacement Current – Maxwell's Equations in integral form and differential form - Time-Varying Potentials. Wave Propagation- Helmholtz wave Equation-wave motion in free space- perfect dielectric - lossy dielectric and good conductor- Skin effect. Poynting vector and power considerations.Unit 6 –Contemporary issues2Text Books1.1. Matthew Sadiku, 'Elements of Electromagnetics', Oxford University Publication, 2018	Biot - Savart I wire carrying current - Amp current-infinite Vector Potenti	Law and Field Intensity - Magnetic Field intensity due to a a current - Magnetic field intensity on the axis of a circu peres Circuital Law - Applications - infinite line current ely long coaxial transmission line. Magnetic Potential-M als - Magnetic Flux Density.	a fini lar lo nt-ini agne	ite and pop ca finite etic Sc	l infi arryii shee alar	nite ng a t of and
Unit 5 - Time Varying Electromagnetic Fields 9 Maxwell's Equations - Faradays Law - Displacement Current – Maxwell's Equations in integral form and differential form - Time-Varying Potentials. Wave Propagation-Helmholtz wave Equation-wave motion in free space- perfect dielectric - lossy dielectric and good conductor- Skin effect. Poynting vector and power considerations. 9 Unit 6 –Contemporary issues 2 Total Hours: 45 Text Books 1. Matthew Sadiku, 'Elements of Electromagnetics', Oxford University Publication, 2018	Unit 4 - Magn Forces due to Current Eleme Magnetic dipo magnetic boun inductors	tetic Forces, Materials and Devices magnetic field- Lorentz force equation for a moving c ent-Force between Two Current Elements. Magnetic To ble - Magnetization in materials – Classification of Mag ndary conditions – Inductors - inductances – magnetic	harg rque gneti	e- Fo and a c mat ergy s	9 rce o mom erial toreo	on a ent- s — d in
Total Hours: 45 Text Books 1. Matthew Sadiku, 'Elements of Electromagnetics', Oxford University Publication, 2018	Unit 5 - Time Maxwell's Eq integral form Helmholtz wa and good cond Unit 6 –Conte	Varying Electromagnetic Fields uations - Faradays Law - Displacement Current – Maxw and differential form - Time-Varying Potentials. W ve Equation-wave motion in free space- perfect dielectri- uctor- Skin effect. Poynting vector and power consideration emporary issues	vell's Vave c - lons.	9 s Equa Prop ossy c	ation bagat lieled 2	s in ion- ctric
Text Books 1. Matthew Sadiku, 'Elements of Electromagnetics', Oxford University Publication, 2018		Total Hour	s: 45	5		
1. Matthew Sadiku, 'Elements of Electromagnetics', Oxford University Publication, 2018	Text Books					
	1. Matthew Sa	adiku, 'Elements of Electromagnetics', Oxford University	Publ	icatio	n, 20	18

- 2. Edward C. Jordon, Keith G. Balmain, "Electromagnetic Waves and Radiating Systems", Pearson Education, Prentice hall, 2015.
- 3. William H. Hayt and John A. Buck, 'Engineering Electromagnetics', McGraw Hill Special Indian edition, 2014.

- 1. Joseph A.Edminister, 'Theory and Problems of Electromagnetics-Schaum series'-TMH-2007.
- 2. J.D.Kraus and D.A Fleisch, Electromagnetics with applications,5/e-Tata McGraw-Hill-2011.
- 3. Bhag Guru and HuseyinHiziroglu," Electromagnetic Field Theory Fundamentals", Cambridge University Press, 2nd edition, 2004
- 4. S.P.Ghosh, Lipika Datta, "Electromagnetic Field Theory "1st edition ,Mc Graw Hill Education(India) Private Limited, 2012.
- 5. David K. Cheng, "Field and Wave Electromagnetics", 2nd edition, Pearson Education, 1989.

Course Objectives

21ECE08

- To study and analyze the characteristics of op-amp
- To design application which employs op-amp •
- To analyze types of ADC, DAC and IC555 Configurations.

Course Outcomes

At the end of the course student will be able

- 1. Analyze the loop (open and closed) configuration of op-amp.
- 2. Apply the concept to analog applications
- 3. Use analog multiplier and PLL for detection of modulated signals.
- 4. Evaluate the performance of different data converters.
- 5. Design the Engineering applications using Op-Amp

Unit 1 - IC Fabrication and Circuit Configuration for IC

Manufacturing process of monolithic ICs - Construction of monolithic bipolar transistor -Monolithic diodes - Integrated Resistors - Monolithic Capacitors - Inductors. Differential gain - CMRR, General operational amplifier stages - internal circuit diagrams of IC 741 -DC and AC performance characteristics – slew rate operational amplifier.

Unit 2 - Applications of Operational Amplifiers

Advantages of ICs over discrete components – Open and closed loop configurations- Sign Changer - Scale Changer - Voltage Follower - Adder - Subtractor - Instrumentation amplifier - Integrator - Differentiator - Low-pass, High- pass and Band-pass Butterworth filters, Conditions for oscillations -Sinewave generators - RC Oscillators - LC Oscillators - Comparators – Schmitt trigger – Multivibrators – Precision rectifier – V to I and I to V converters.

Unit 3 - Voltage Regulators and PLL

Timer IC 555 –Timer applications - IC Voltage regulators – LM317 Three terminal fixed and adjustable voltage regulators - IC 723 general purpose regulator- Switching Regulators, Monolithic switching regulator

Operation of the basic PLL - Closed loop analysis - Voltage controlled oscillator -Monolithic PLL IC 565 – application of PLL for AM detection – FM detection.

Unit 4 - Analog to Digital and Digital to Analog Converters

Analog and Digital Data Conversions – specifications – D/A converter– weighted resistor type, R-2R Ladder type – Voltage Mode and Current Mode- high speed sample-and-hold circuits – A/D Converters– Flash type – Counter type-Successive Approximation type – Single Slope, Dual Slope.

Unit 5 - Analog Multiplier and Special Function ICs

Analog Multiplier using Emitter Coupled Transistor Pair - Gilbert Multiplier cell -Variable transconductance technique – analog multiplier and phase detection,

DC-DC converters- Switched capacitor filter IC MF10 - Frequency to Voltage and Voltage to Frequency converters -Audio Power amplifier - Video Amplifier.

Unit 6 –**Contemporary issues**

Total Hours: 45

Text Books

1. S.Salivahanan& V.S. KanchanaBhaskaran, "Linear Integrated Circuits", 2nd Edition, TMH, 2015.

8

2

2. D.RoyChoudhry, Shail Jain, "Linear Integrated Circuits", New Age International Pvt. Ltd., 2015.

- 1. B.S.Sonde, "System design using Integrated Circuits", 2nd Edition, New Age Pub, 2001
- 2. RamakantA.Gayakwad, "OP-AMP and Linear ICs", 4th Edition, Prentice Hall / Pearson Education, 2001.
- 3. Sergio Franco, "Design with operational amplifiers and analog integrated circuits", 3rd Edition, Tata McGraw–Hill, 2007.
- 4. Gray and Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley International, 2005.
- 5. J.Michael Jacob, "Applications and Design with Analog Integrated Circuits", Prentice Hall of India, 1996.
- 6. William D.Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson Education, 2004.
- 7. K Lal Kishore, "Operational Amplifier and Linear Integrated Circuits", Pearson Education, 2006.

21ECEP3	COMMUNICATION SYSTEMS LABORATORY	L	Т	P	С
2110113		0	0	4	2
Course Objec	tives				
• To provide	experience on design, testing and analysis of circuits used	in c	ommu	inica	tior
engineering	5. A ability to design and experimentally test DE since its and	1 1		~~~~	
• Develop th	communication systems	1 nar	Jware	syst	ems
 To unders 	and the concepts of pre-emphasis and de-emphasis	in c	ommi	inica	tior
transmitter	s and receivers.	•			
• To unders	tand the concepts of time division multiplexing an	d d	e-mult	tiplex	xing
techniques.					
• Acquire th	e ability to design, implement and test modems for digi	tal c	ommu	inica	tion
systems					
LIST OF EX	PERIMENTS				
CICLEI(SD)	experiments are manuatory)				
 Alvi gener AM using 	multiplier IC AD534 or AD633				
3 AM detec	tion using envelope detector				
J. Alvi ucted A IF tuned	umlifier				
5 FM using	555 IC				
6 FM gener	ation and demodulation using PLI				
7 Frequency	anon and demodulation using TLL.				
8 Pre-emph	asis and de-emphasis circuits				
9 Analog si	anal sampling & Reconstruction				
CVCLE II (S	y mandatory)				
10 Generatio	n of Pseudo Noise Binary sequence using Shift registers				
10. Generatio	ision Multiplexing and De-multiplexing				
12 Generatio	n & Detection of DM/SIGMA DELTA/ ADM				
13 Generatio	n & Detection of PAM/PWM/PPM				
14 Generatio	n & Detection of RPSK/DPSK/DFPSK				
15 Generatio	n & Detection of PCM				
16. OPSK Me	adulation and Demodulation				
	Total	Нот	rs: 45	5	
References		1100		-	
1. Sam Shann	nugam, "Digital and Analog Communication Systems", Jo	hn W	Viley,	2005	5
2. J. M. Woz	encraft and I. M. Jacobs, Principles of Communication E	ngin	eering	, Wi	iley
1965.	-		-		-
3. J. R. Barry	, E. A. Lee, and D. G. Messerschmitt, Digital Communic	cation	n, 3rd	Edit	ion
Springer, 2	004. abilling "Dringinlag of Communication Sectors " 2 1 1	١ /	C		11
4. 1 aud and S 5 V Chandra	Sekar "Analog Communication" Oxford University Pres	., IVI s 20	z-Grav 08	w H1	11
	Sekai, Analog Communication, Oxford Oniversity Fres	s, 20	00		

LINEAR INTEGRATED CIRCUITS LABORATORY

L	Т	P	С
0	0	4	2

Course Objectives

- To examine the ac and dc characteristics of Opamp 741.
- To practice and familiarize the different applications of IC 741/TL082
- To verify the Filtering characteristics of opamp.
- To simulate the opamp applications using PSpice

LIST OF EXPERIMENTS

- 1. Implementation of Inverting, Noninverting, differential amplifiers and voltage follower.
- 2. Implementation of Integrator and Differentiator.
- 3. Implementation of Schmitt trigger and Instrumentation amplifier.
- 4. Design of Active low pass, high pass, band pass and notch filters.
- 5. Implementation of Phase shift and Wien bridge oscillators.
- 6. Astable and mono stable multivibrators using NE555 Timer.
- 7. Study of PLL 565 characteristics and its use as Frequency Multiplier.
- Study of DC power supply using LM317, LM723 and Low Drop out (LDO) Regulator using TPS72.
- 9. Design of DC to DC converter that can give regulated output voltage for a given input voltage range using TPS40020 IC.
- 10. Designing with 12 bit parallel input multiplying DAC 7821
- 11. Simulation of Experiments 4, 5, 6, 7 and 8 using Spice tools.
- 12. Mini Project

Total Hours: 45

Course Objectives

- To learn discrete fourier transform, properties of DFT and its application to linear filtering
- To understand the characteristics of digital filters, design digital IIR and FIR filters and apply these filters to filter undesirable signals in various frequency bands
- To understand the effects of finite precision representation on digital filters
- To understand the fundamental concepts of multi rate signal processing and its applications
- To introduce the concepts of adaptive filters and its application to communication engineering

Course Outcomes

At the end of the course, the student should be able to

- 1. Apply DFT for the analysis of digital signals and systems
- 2. Design IIR and FIR filters
- 3. Characterize the effects of finite precision representation on digital filters
- 4. Design multirate filters
- 5. Apply adaptive filters appropriately in communication systems

Unit 1-Discrete Fourier Transform

Review of signals and systems, concept of frequency in discrete-time signals, summary of analysis & synthesis equations for FT & DTFT, frequency domain sampling, Discrete Fourier transform (DFT) - deriving DFT from DTFT, properties of DFT - periodicity, symmetry, circular convolution. Linear filtering using DFT. Filtering long data sequences - overlap save and overlap add method. Fast computation of DFT - Radix-2 Decimation-in-time (DIT) Fast Fourier transform (FFT), Decimation-in-frequency (DIF) Fast Fourier transform (FFT). Linear filtering using FFT.

Unit 2-Infinite Impulse Response Filters

Characteristics of practical frequency selective filters. characteristics of commonly used analog filters - Butterworth filters, Chebyshev filters. Design of IIR filters from analog filters (LPF, HPF, BPF, BRF) - Approximation of derivatives, Impulse invariance method, Bilinear transformation. Frequency transformation in the analog domain. Structure of IIR filter - direct form I, direct form II,Cascade, parallel realizations.

Unit 3-Finite Impulse Response Filters

Design of FIR filters - symmetric and Anti-symmetric FIR filters - design of linear phase FIR filters using Fourier series method - FIR filter design using windows (Rectangular, Hamming and Hanning window), Frequency sampling method. FIR filter structures - linear phase structure, direct form realizations.

nit 4-Finite Word Length Effects

Fixed point and floating point number representation - ADC - quantization - truncation and rounding - quantization noise - input / output quantization - coefficient quantization error - product quantization error - overflow error - limit cycle oscillations due to product quantization and summation - scaling to prevent overflow.

Unit 5-Introduction To Digital Signal Processors

DSP functionalities - circular buffering – DSP architecture – Fixed and Floating point architectureprinciples – Programming – Application examples.

Unit 6 – Contemporary issues

Total Hours: 60

12

12

11

12

11 oint

Text Books

 John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principles, Algorithms & Applications", Fourth Edition, Pearson Education / Prentice Hall, 2007. (UNIT I – V)

- 1. Emmanuel C. Ifeachor & Barrie. W. Jervis, "Digital Signal Processing", Second Edition, Pearson Education / Prentice Hall, 2002.
- 2. A. V. Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8th Indian Reprint, Pearson, 2004.
- 3. Sanjit K. Mitra, "Digital Signal Processing A Computer Based Approach", Tata Mc Graw Hill, 2007.
- 4. Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.

21ECE11	COMMUNICATION NETWORKS	L	Т	P	С
		3	0	0	3
 To und To Per To be e 	erstand the concepts of network architecture and transmis form and understand methods for error detection and correct exposed to various addressing schemes and routing protoc	sion ection ols.	mediu 1 of da	ım ata.	
To learTo be f	n the flow control and congestion control algorithms familiar with real time applications of networks				
Course Outco At the e 1. Ad 2. Rec 3. Exc dat 4. Dec 5. Dec	nd of the course, the student should be able to opt the required functionality at each layer for given appli- cognize and Correct the error in the frame ercise the knowledge of addressing scheme and various ro a communication to select optimal path. termine the flow of information from one node to another velop real time applications of networks	catio outing node	n ; proto ; in the	ocols e netv	in work
Unit 1- Fundar Overview of Da WAN - Buildin	nentals Of Networking ata Communication Networks – Network Topology – Types g a Network - Layering and protocols - OSI Model – Overview	of Ne of D	etwork ata and	9 1s – L d Sigi	AN – nals.
Unit 2-Data Li Introduction to access control -	nk Layer Data Link Layer – Link Layer Addressing - Error Detection Ethernet - Wireless LANs – Bluetooth - Zigbee – Switching.	and C	Correct	9 tion -	Media
Unit 3-Routing Basic Internetw Protocols – IPva	orking - Routing – Unicast Routing – Algorithms - Protocols 4 & IPv6 Addressing - Transition from IPv4 to IPv6.	5 – M	ulticas	9 st Roi	ıting -
Unit 4-Transpo Introduction to control - Retra avoidance – Qo	ort Layer Transport layer – Protocols - UDP - TCP - Connection man nsmission – Timer Management - TCP Congestion contro S.	agem ol - (ent - 1 Conges	8 Flow stion	
Unit 5-Applica	tion Layer			8	
Traditional App Network Securi	lications - Electronic Mail – WWW & HTTP – DNS – Need fo ty.	or Cry	ptogra	aphy a	&
Unit 6 –Conte	emporary issues			2	
	Total Hou	rs: 45	5		
Text Books 1. Behrou Networ 2. Andrew Kindle	z A. Forouzan, "Data Communications rking", Fifth Edition, McGrawHill, 2013. S. Tanenbaum, David J. Wetherall , "Computer Net Edition.	an etwor	ıd ks" 5	th Ec	lition,
References					
 James J Featurin Nader. Dublich 	F. Kurose, Keith W. Ross, "Computer Networking - A'ng the Internet", Fifth Edition, Pearson Education, 2009. F. Mir, "Computer and Communication Networks", Pers. 2010	Top-l earso	Down n Pre	App entice	roach Hall
3. Ying-D Source	ar Lin, Ren-Hung Hwang, Fred Baker, "Computer N Approach", Mc Graw Hill Publisher, 2011.	Jetwo	orks:	An (Open-
4. Larry I	2. Peterson, Bruce S. Davie, "Computer Networks: A	Syste	ems A	Appro	ach",

21ECE12	MICROPROCESSORS , MICROCONTROLLERS L	Т	P	С
ZIECEIZ	AND INTERFACING TECHNIQUES 3	0	0	3
Course Objec	tives			
• To dev	elop an in-depth understanding of the operation of microproces	sors a	and	
microc	ontrollers, machine language programming & interfacing techn	iques		
Course Outco	omes			
At the e	nd of the course, the student should be able to			
1. Describ	be the architecture, role of CPU, registers of intelmicroprocessor	rs.		
2. Write a	n assembly language programs by using the knowledge on instr	ructio	n set	and
program	nming of 8085 and 8086 processors.			
3. Interfac	e a peripheral with 8085/8086 processor.	• •		
4. Select a	a microcontroller required an application by using knowledge ga	ained	on	
archited	cture of microcontrollers.			
5. Develo	pe a microcontroller based system by acquiring knowledge on p	progra	amm	ing a
IIICIOC				
Unit 1- The 8	085 Microprocessor			9
Microprocesso	ors Introduction:Computer and its organisation,Programming sy	stem,	Add	ress
Bus, Data Bus	and Control Bus, Tristate Bus, Clock generation, Connecting M	icrop	roces	ssorto
I/O Devices, I	Data transfer schemes, Architectural Advancements, Evolution-8	8085:	Hard	ware
Architecture,I	nstructionset and Programming.			
0011 2-8086 1 8086: Hardw	Microprocessor are Architecture, Instruction set and Programming – I	[ntroc	luctio	8 on to
Architecture of AMD's Bulldo	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar.	Introc Gold	luctio Imon	8 on to t and
Amp's Bulldo	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing	Introc Gold	luctio Imon	8 on to t and 8
Architecture of AMD's Bulldo	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication interfacing	Introc Gold	luctio Imon	8 on to t and 8 Seria
Unit 2-8086 1 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication inte n interface – D/A and A/D Interface - Timer – Keyboard /disp	Introc Gold erface lay c	luctic lmon e – ontro	8 on to t and 8 Seria oller -
Unit 2-8086 1 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt contr	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication inter n interface – D/A and A/D Interface - Timer – Keyboard /disp coller – DMA controller – Programming and applications Case	Introc Gold erface lay c studi	luctio lmon e – ontro es: T	8 on to t and 8 Seria oller - Traffic
Unit 2-8086 I 8086: Hardw Architecture o AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt control,	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication into n interface – D/A and A/D Interface - Timer – Keyboard /disp coller – DMA controller – Programming and applications Case LED display, LCD display, Keyboard display interface and Ala	Introc Gold erface lay c studi arm (luctic lmon e – ontro es: T Contr	8 on to t and 8 Seria Oller - Traffic coller.
Unit 2-8086 1 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt contri Light control, Unit 4-Micro	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication inter n interface – D/A and A/D Interface - Timer – Keyboard /disp oller – DMA controller – Programming and applications Case LED display , LCD display, Keyboard display interface and Ala controllers	Introc Gold erface blay c studi arm (luctic lmon e – ontro es: T Contr	8 on to t and 8 Seria oller - Traffic oller. 9
Unit 2-8086 1 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt contr Light control, Unit 4-Microo Introduction	 Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication intention interface – D/A and A/D Interface - Timer – Keyboard /disp oller – DMA controller – Programming and applications Case LED display, LCD display, Keyboard display interface and Ala controllers controllers coarchitecture of: Intel 8051, PIC 32, ARM Cortex A p 	Introc Gold erface lay c studi arm C	luctio lmon e – ontro es: T Contr	8 on to t and Seria Oller - Traffic oller. 9
Unit 2-8086 1 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt contri Light control, Unit 4-Microo Introduction	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication inter n interface – D/A and A/D Interface - Timer – Keyboard /disp roller – DMA controller – Programming and applications Case LED display , LCD display, Keyboard display interface and Ala controllers to architecture of: Intel 8051, PIC 32, ARM Cortex A p to Arduino - AVR Microcontroller History and Features	Introc Gold erface lay c studi arm (proces – A	luctio lmon e – ontro es: T Contr ssor-	8 on to t and 8 Seria oller - Traffic oller. 9
Unit 2-8086 1 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt contri Light control, Unit 4-Microo Introduction to Architecture a	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication into n interface – D/A and A/D Interface - Timer – Keyboard /disp oller – DMA controller – Programming and applications Case LED display, LCD display, Keyboard display interface and Ala controllers to architecture of: Intel 8051, PIC 32, ARM Cortex A p to Arduino - AVR Microcontroller History and Features nd Assembly Language Programming, Programming in C –	Introc Gold erface lay c studi arm C proces – A I/O	luctio lmon e – ontro es: T Contr ssor- SSOR- AVR Port	8 on to t and Seria Oller - Traffic oller. 9
Unit 2-8086 1 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt contri Light control, Unit 4-Microo Introduction of Architecture a Programming	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication inter n interface – D/A and A/D Interface - Timer – Keyboard /disp coller – DMA controller – Programming and applications Case LED display , LCD display, Keyboard display interface and Ala controllers to architecture of: Intel 8051, PIC 32, ARM Cortex A p to Arduino - AVR Microcontroller History and Features nd Assembly Language Programming, Programming in C – – Instructions – AddressingModes – Bit addressability – AVR	Introd Gold erface blay c studi arm C proces – A I/O Fuse	luctio lmon e – ontro es: T Contr ssor- AVR Port bits	8 on to t and 8 Seria oller - Traffic oller. 9
Unit 2-8086 1 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt control, Unit 4-Microo Introduction of Introduction of Architecture a Programming – Timer, Co	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication inter n interface – D/A and A/D Interface - Timer – Keyboard /disp oller – DMA controller – Programming and applications Case LED display , LCD display, Keyboard display interface and Ala controllers oarchitecture of: Intel 8051, PIC 32, ARM Cortex A p to Arduino - AVR Microcontroller History and Features and Assembly Language Programming, Programming in C – – Instructions – AddressingModes – Bit addressability – AVR unter programming – AVR Interrupts –SPI Bus protoco	Introd Gold erface lay c studi arm C proces – A I/O Fuse ol –	luctic lmon e – ontro es: T Contr ssor- VR Port bits SPI	8 on to t and Seria oller - Yraffic oller. 9
Unit 2-8086 1 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt control, Unit 4-Microo Introduction of Architecture a Programming – Timer, Co Programming	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication inter n interface – D/A and A/D Interface - Timer – Keyboard /disp coller – DMA controller – Programming and applications Case LED display , LCD display, Keyboard display interface and Ala controllers to Arduino - AVR Microcontroller History and Features nd Assembly Language Programming, Programming in C – – Instructions – AddressingModes – Bit addressability – AVR unter programming – AVR Interrupts –SPI Bus protoco in AVR.	Introd Gold erface blay c studi arm (proces – A I/O Fuse bl –	luctio lmon e – ontro es: T Contr ssor- Contr ssor- AVR Port bits SPI	8 on to t and 8 Seria oller - Traffic oller. 9
Unit 2-8086 1 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt contri- Light control, Unit 4-Microo Introduction of Architecture a Programming – Timer, Co Programming	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication into n interface – D/A and A/D Interface - Timer – Keyboard /disp coller – DMA controller – Programming and applications Case LED display , LCD display, Keyboard display interface and Ala controllers to architecture of: Intel 8051, PIC 32, ARM Cortex A p to Arduino - AVR Microcontroller History and Features and Assembly Language Programming, Programming in C – – Instructions – AddressingModes – Bit addressability – AVR unter programming – AVR Interrupts –SPI Bus protoco in AVR.	Introd Gold erface blay c studi arm C proces – A I/O Fuse ol –	luctio lmon e – ontro es: T Contr ssor- Contr ssor- AVR Port bits SPI 9	8 on to t and 8 Seria oller - Traffic oller. 9
Unit 2-8086 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt control, Unit 4-Microo Introduction of Architecture a Programming – Timer, Co Programming	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication into n interface – D/A and A/D Interface - Timer – Keyboard /disp oller – DMA controller – Programming and applications Case LED display , LCD display, Keyboard display interface and Ala controllers oarchitecture of: Intel 8051, PIC 32, ARM Cortex A p to Arduino - AVR Microcontroller History and Features and Assembly Language Programming, Programming in C – – Instructions – AddressingModes – Bit addressability – AVR unter programming – AVR Interrupts –SPI Bus protoco in AVR.	Introd Gold erface lay c studi arm C proces – A I/O Fuse ol –	luctio lmon e – ontro es: T Contr ssor- AVR Port bits SPI 9	8 on to t and Seria oller - Traffic oller. 9
Unit 2-8086 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt contr Light control, Unit 4-Microo Introduction f Architecture a Programming – Timer, Co Programming Unit 5-Microo ATMEGA32 of	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication into n interface – D/A and A/D Interface - Timer – Keyboard /disp oller – DMA controller – Programming and applications Case LED display , LCD display, Keyboard display interface and Ala controllers to architecture of: Intel 8051, PIC 32, ARM Cortex A p to Arduino - AVR Microcontroller History and Features and Assembly Language Programming, Programming in C – – Instructions – AddressingModes – Bit addressability – AVR unter programming – AVR Interrupts –SPI Bus protoco in AVR.	Introd Gold erface lay c studi arm C proces – A I/O Fuse ol –	luctio lmon e – ontro es: T Contr SSOT- VR Port bits SPI 9	8 on to t and Seria oller - Traffic oller. 9
Unit 2-8086 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt control, Unit 4-Microo Introduction of Architecture a Programming – Timer, Co Programming Unit 5-Microo ATMEGA32 of ATMEGA32 of ATMEGA32 of AVR connection	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication into n interface – D/A and A/D Interface - Timer – Keyboard /disp oller – DMA controller – Programming and applications Case LED display , LCD display, Keyboard display interface and Ala controllers oarchitecture of: Intel 8051, PIC 32, ARM Cortex A p to Arduino - AVR Microcontroller History and Features nd Assembly Language Programming, Programming in C – – Instructions – AddressingModes – Bit addressability – AVR unter programming – AVR Interrupts –SPI Bus protoco in AVR.	Introd Gold erface blay c studi arm C proces - A I/O Fuse bl -	luctio lmon e – ontro es: T Contr ssor- AVR Port bits SPI 9 acing	8 on to t and Seria oller - Traffic oller. 9
Unit 2-8086 1 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt contri Light control, Unit 4-Microo Introduction of Architecture a Programming – Timer, Co Programming Unit 5-Microo ATMEGA32 of ATMEGA32 of AVR connectin	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication into n interface – D/A and A/D Interface - Timer – Keyboard /disp oller – DMA controller – Programming and applications Case LED display , LCD display, Keyboard display interface and Ala controllers oarchitecture of: Intel 8051, PIC 32, ARM Cortex A p o Arduino - AVR Microcontroller History and Features nd Assembly Language Programming, Programming in C – – Instructions – AddressingModes – Bit addressability – AVR unter programming – AVR Interrupts –SPI Bus protoco in AVR.	Introd Gold erface lay c studi arm C oroces – A I/O Fuse ol –	luctio lmon e – ontro es: T Contr ssor- VR Port bits SPI 9 acing	8 on to t and Seria oller - Traffic oller. 9
Unit 2-8086 1 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt control, Unit 4-Microo Introduction of Architecture a Programming – Timer, Co Programming Unit 5-Microo ATMEGA32 of ATMEGA32 of ATMEGA32 of ATMEGA32 of AVR connectin motor control	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication into n interface – D/A and A/D Interface - Timer – Keyboard /disp oller – DMA controller – Programming and applications Case LED display , LCD display, Keyboard display interface and Ala controllers oarchitecture of: Intel 8051, PIC 32, ARM Cortex A p to Arduino - AVR Microcontroller History and Features nd Assembly Language Programming, Programming in C – – Instructions – AddressingModes – Bit addressability – AVR unter programming – AVR Interrupts –SPI Bus protoco in AVR. controller Interfacing connection to RS232 – LCD Interfacing – Keyboard Interfacing DC features – Interfacing temperature sensor to AVR – DAC I on torelay – AVR connection to solid state relay – DC motor in usingPWM – Seven Segment Decoder interfacing 4.7 – 4.	Introd Gold erface blay c studi arm C proces – A I/O Fuse bl –	luctio lmon e – ontro es: T Contr ssor- VR Port bits SPI 9 acing	8 on to t and Seria oller - Traffic oller. 9
Unit 2-8086 8086: Hardw Architecture of AMD's Bulldo Unit 3- Proce Memory Inter communicatio Interrupt control Light control, Unit 4-Microo Introduction f Architecture a Programming – Timer, Co Programming Unit 5-Microo ATMEGA32 of ATMEGA32 of	Microprocessor are Architecture, Instruction set and Programming – I of:Intel's P5, Netburst, Core, Nehalem, Skylake, Bonnell, ozer, Jaguar. ssor - Peripheral Interfacing facing and I/O interfacing - Parallel communication inten interface – D/A and A/D Interface - Timer – Keyboard /disp oller – DMA controller – Programming and applications Case LED display, LCD display, Keyboard display interface and Ala controllers oarchitecture of: Intel 8051, PIC 32, ARM Cortex A p o Arduino - AVR Microcontroller History and Features ind Assembly Language Programming, Programming in C – – Instructions – AddressingModes – Bit addressability – AVR unter programming – AVR Interrupts –SPI Bus protoco in AVR. controller Interfacing connection to RS232 – LCD Interfacing – Keyboard Interfacing DC features – Interfacing temperature sensor to AVR – DAC I on torelay – AVR connection to solid state relay – DC motor in usingPWM – Seven Segment Decoder interfacing trends	Introd Gold erface lay c studi arm C proces – A I/O Fuse ol –	luctio lmon e – ontro es: T Contr ssor- AVR Port bits SPI 9 acing cing – 2	8 on to t and Seria oller - Traffic oller. 9

- 1. Muhammad Ali Mazidi, Sarmad Naimi, Sepehr Naimi, AVR Microcontroller andEmbedded Systems: Using Assembly and C, Pearson India, 2014.
- 2. Krishna Kant, Microprocessors and Microcontrollers, PHI, 1st Edition, 2011.
- 3. ATmega48A/PA/88A/PA/168A/PA/328/P Complete Datasheet, ATMEL, 2012.

- 1. Douglas Hall, S S S P Rao, Microprocessors and its Interfacing, TMH, 3rd Edition, 2012.
- 2. Rafiquzzaman M, Microprocessors: Theory and Applications, PHI, 2008.
- 3. N. Senthil Kumar, M. Saravanan, S. Jeevananthan and S. K. Shah, Microprocessors And Interfacing, Oxford Press India, 1st Edition, 2012.
- 4. Dhananjay Gadre, Programming and Customizing the AVR Microcontroller, TMH, 1st Edition, 2009.
- 5. Richard H. Barnett, Larry D. O'Cull, Sarah Alison Cox, Embedded C Programming And the ATMEL AVR, Cengage International, 2010

21ECEP5

DIGITAL SIGNAL PROCESSING LABORATORY

L	Т	Р	С
0	0	2	1

Objectives:

- To perform basic signal processing operations such as Linear Convolution, CircularConvolution, Auto Correlation, Cross Correlation and Frequency analysis in MATLAB
- To implement FIR and IIR filters in MATLAB and DSP Processor
- To study the architecture of DSP processor
- To design a DSP system to demonstrate the Multi-rate and Adaptive signal processing concepts.

Course Outcomes

At the end of the course, the student should be able to

- 1. Carryout basic signal processing operations
- 2. Demonstrate their abilities towards MATLAB based implementation of various DSP systems
- 3. Analyze the architecture of a DSP Processor
- 4. Design and Implement the FIR and IIR Filters in DSP Processor for performing filtering operation over real-time signals
- 5. Design a DSP system for various applications of DSP

LIST OF EXPERIMENTS: MATLAB / EQUIVALENT SOFTWARE PACKAGE CYCLE-I

- 1. Generation of elementary Discrete-Time sequences
- 2. Linear and Circular convolutions
- 3. Auto correlation and Cross Correlation
- 4. Frequency Analysis using DFT
- 5. Design of FIR filters (LPF/HPF/BPF/BSF) and demonstrates the filtering operation
- 6. Design of Butterworth and Chebyshev IIR filters (LPF/HPF/BPF/BSF) and demonstrate the filtering operations

DSP PROCESSOR BASED IMPLEMENTATION CYCLE-II

- 7. Study of architecture of Digital Signal Processor
- 8. Perform MAC operation using various addressing modes
- 9. Generation of various signals and random noise
- 10. Design and demonstration of FIR Filter for Low pass, High pass, Band pass and Band stop filtering
- 11. Design and demonstration of Butter worth and Chebyshev IIR Filters for Low pass, High pass, Band pass and Band stop filtering
- 12. Implement an Up-sampling and Down-sampling operation in DSP Processor

Total Hours:30

21ECEP6	MICROPROCESSORS, MICROCONTROLLERS AND L T	P	C
Course Obie	INTERFACING LABORATORY 0 0	2	I
Course Obje	cuves niliarisa tha students with		
	initialise the students with		and
• Archini	ecture of 8085, 8086 processor, assembling languageprogram	ming	and
	Migro controller concents, analitecture programming, and appli	lantin	n of
• AVK	controllers	Catio	11 01
Course Oute			
At the end of	unes f the course student will be able to		
1 Write	Assembly I anguage Programs for Microprocessors and Microcontro	ller	
2. Interfa	ace various devices to a microprocessor/microcontroller, including		
memo	ryInterfaceaperipheral with 8085/8086 processor.		
3. Desig	n and develop a microcontroller based systems as per the requirement	s.	
-			
LIST OF EXI	PERIMENTS:		
1. Micro	oprocessor Trainer kits: Familiarisation – Hardware, Software		
<u>8085 Pro</u>	grams (Any three)		
2. Additi	ion of Two 8-Bit Numbers and Sum is 16 Bit.		
3. Additi	on of Two 16-BitNumbers and Sum is 32-bit		
4. Subtra	action of Two 8-Bit Numbers.		
5. Squar	e root of a number		
8086 Pro	<u>grams (Any Four)</u>		
0. Multip	Dy two $8/10$ bit numbers.		
7. Divide 8 Findir	z two o/10 bit numbers.		
0. Arran	ge 'n' numbers in ascending/descending order		
10 Find F	Factorial of a number		
Microcor	actorial of a number.		
11. Micro	controller Programming – Familiarisation		
(Any three	φ)		
$\frac{1211}{12}$. Switch	hing ON/OFF LED with Software Button Debounce.		
13. Gener	ate Square Wave, Sawtooth Wave, Triangular Wave using PWM.		
14. Use T	imer to flash LED.		
15. Displa	y temperature using temperature sensor (ADC, Interrupts, LCD inter-	face).	
Scroll a text of	on a 16x2 LCD screen.		
	Total Hours: 3	\$0	
Textbooks			
1. Krishı	na Kant, "Microprocessors and Microcontrollers: Architecture, Pro	gram	ming
and	System Design8085,8086,8051,8096",PHIIndia,2014(2nd Edition	ı), I	SBN
97881	20348530.	~	
2. Dougl	as V. Hall and S S S P Rao, "Microprocessors Interfacing", Mc	Graw	Hill
India,	2012(3 rd Edition), ISBN: 9781259006159		
3. Ardun	no Cookbook, Michael Margolis, 2nd Edition, O'Reilly		
References			
1. N. Sei	nthil Kumar, M. Saravanan, S. Jeevananthan and S. K. Shah, Micro	proce	essors
and In	terfacing, Oxford Press India, 1 st Edition, 2012.		
2. Rafiqu	Izzaman M, Microprocessors: Theory and Applications, PHI, 2008.		
3. Gettin	g Started with Arduino, Massimo Banzi, 2nd Edition, O'Reilly.		

21ECE13

VLSI DESIGN

L	Т	Р	С
3	0	0	3

Q

Course Objectives

- Study the fundamentals of CMOS circuits and its characteristics.
- Learn the design and realization of combinational & sequential digital circuits.
- Architectural choices and performance tradeoffs involved in designing and realizing the circuits in CMOS technology are discussed
- Learn the different FPGA architectures and testability of VLSI circuits.

Course Outcomes

At the end of the course student will be able

- 1. Realize the concepts of digital building blocks using MOS transistor.
- 2. Design combinational MOS circuits and power strategies.
- 3. Design and construct Sequential Circuits and Timing systems.
- 4. Design arithmetic building blocks and memory subsystems.
- 5. Apply and implement FPGA design flow and testing.

Unit 1 – Introduction to MOS Transistor

MOS Transistor, CMOS logic, Inverter, Pass Transistor, Transmission gate, Layout Design Rules, Gate Layouts, Stick Diagrams, Long-Channel I-V Charters tics, C-V Charters tics, Non ideal I-V Effects, DC Transfer characteristics, RC Delay Model, Elmore Delay, Linear Delay Model, Logical effort, Parasitic Delay, Delay in Logic Gate, Scaling.

Unit 2 – Combinational MOS Logic Circuits

Circuit Families: Static CMOS, Ratioed Circuits, Cascode Voltage Switch Logic, Dynamic Circuits, Pass Transistor Logic, Transmission Gates, Domino, Dual Rail Domino, CPL, DCVSPG, DPL, Circuit Pitfalls.

Power: Dynamic Power, Static Power, Low Power Architecture.

Unit 3 – Sequential Circuit Design

Static latches and Registers, Dynamic latches and Registers, Pulse Registers, Sense Amplifier Based Register, Pipelining, Schmitt Trigger, Monostable Sequential Circuits, Astable Sequential Circuits.

Timing Issues : Timing Classification Of Digital System, Synchronous Design.

Unit 4 - Design Of Arithmetic Building Blocks And Subsystem

Arithmetic Building Blocks: Data Paths, Adders, Multipliers, Shifters, ALUs, power and speed tradeoffs, Case Study: Design as a tradeoff.

Designing Memory and Array structures: Memory Architectures and Building Blocks, Memory Core, Memory Peripheral Circuitry.

Unit 5 – Implementation Strategies And Testing

FPGA Building Block Architectures, FPGA Interconnect Routing Procedures. Design for Testability: *Ad Hoc* Testing, Scan Design, BIST, IDDQ Testing, Design for Manufacturability, Boundary Scan.

Unit 6 – Contemporary issues

Total Hours: 45

Text Books

 Neil H.E. Weste, David Money Harris "CMOS VLSI Design: A Circuits and SystemsPerspective", 4th Edition, Pearson, 2017 (UNIT I,II,V)

8

2.	Jan M. Rabaey ,Anantha Chandrakasan, Borivoje. Nikolic, "Digital Integrated Circuits: ADesign perspective", Second Edition , Pearson , 2016.(UNIT III,IV)
References	
1.	M.J. Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997
2.	Sung-Mo kang, Yusuf leblebici, Chulwoo Kim "CMOS Digital Integrated Circuits: Analysis& Design",4 th edition McGraw Hill Education,2013
3.	Wayne Wolf, "Modern VLSI Design: System On Chip", Pearson Education, 2007
4.	R.Jacob Baker, Harry W.LI., David E.Boyee, "CMOS Circuit Design, Layout and Simulation", Prentice Hall of India 2005.

21ECE14	WIRELESS COMMUNICATION	L	T	P	C
		3	0	0	3
Course Objec	tuves				
• 10 stud	erstand the design of a cellular system				
To und To stud	ty the various digital signaling techniques and multipath m	itiga	tion		
technic	lues	ingu	tion		
• To und	lerstand the concepts of multiple antenna techniques				
Course Outco	omes				
The student s	hould be able to:				
1. Charac	terize a wireless channel and evolve the system design spe	cific	ations		
2. Design	a cellular system based on resource availability and traffic	c der	nands		
3. Identif	y suitable signaling and multipath mitigation techniques for	or the	wire	ess	
channe	and system under consideration.				
Unit 1-Wirele	ss Channels				9
Large scale pa	th loss – Path loss models: Free Space and Two-Ray mo	odels	-Link	c Bu	dget
design – Smal	ll scale fading- Parameters of mobile multipath channels	-Ti	ime di	isper	sion
parameters-Co	berence bandwidth – Doppler spread & Coherence til	me,	fading	g du	e to
Multipath time	e delay spread – flat fading – frequency selective fadin	g –	Fadin	g du	e to
Doppler spread	a – last lading – slow lading.				0
Multiple Acce	ar Architecture	loulo	tiona	Call	y Julor
concept Freque	ess techniques - FDMA, TDMA, CDMA - Capacity ca		stom	-Cell	ular vity
trunking & gr	ide of service – Coverage and capacity improvement	x sy	stem	apav	uy-
Unit 3-Digital	Signaling For Fading Channels				9
Structure of a	wireless communication link Principles of Offset-OF	PSK	n/4-	DOF	PSK
Minimum Shi	ft Keving, Gaussian Minimum Shift Keving, Error perf	orma	ince i	n fa	ding
channels, OFD	DM principle – Cyclic prefix, Windowing, PAPR.				0
					0
Unit 4-Multip	bath Mitigation Techniques		-	c	.8
Equalisation –	- Adaptive equalization, Linear and Non-Linear equalization	ition	, Zerc) for	cing
toobniquos Er	gorunnis. Diversity – Micro and Macro diversity, Diversity reception	Dol	r_{0}	ivor	ning
techniques, Er	for probability in fading channels with diversity reception,	пак		IVEI.	
Unit 5-Multip	le Antenna Techniques				8
MIMO system	ns – spatial multiplexing -System model -Pre-coding -	Be	am fo	ormii	ng -
transmitter div	versity, receiver diversity- Channel state information-capa	acity	in fa	ding	and
non-fading cha	annels.			Ũ	
Unit 6 – Conte	emporary issues			2	
	Total Hour	s: 45			
Text Books				~	
1.	Rappaport,T.S., —Wireless communications, Pearson E	Educa	ation,	Seco	ond
	Edition, 2010. (UNIT I, II, IV)	XX 7*1			
2.	Andreas.F. Monsch, — Wireless Communications, John	W1l	ey –		
Poforonaca	IIIuia, 2000. (UINI I III, V)				
1	Wireless Communication – Andrea Goldsmith Cambridge	e Un	iversit	v Pr	ess
	2011	011	IVCISI	y 1 1	C 35,
2.	Van Nee, R. and Ramji Prasad, -OFDM for wireless	mult	imedi	a	
	communications, Artech House, 2000	a			
3.	David Tse and Pramod Viswanath, —Fundamentals o	f W	ireless	5	
л	Uppena Dalal — Wireless Communication Ovford University	city	Dress	2000	2
4.		Sity	1033,	2005	

21ECE15	TDANSMISSION I INFS AND DE SVSTEMS	L	Т	P	С
ZIECEIS	TRANSMISSION LINES AND RESISTENTS	3	0	0	3
Course Objec	tives				
 To intr 	oduce the various types of transmission lines and its chara	octeris	stics		
To give	e thorough understanding about high frequency line, powe	er and	impe	edanc	e
measur	rements				
 To imp 	art technical knowledge in impedance matching using sm	ith ch	nart		
• To intr	oduce passive filters and basic knowledge of active RF co	mpor	nents		
• To get	acquaintance with RF system transceiver design				
Course Outco	omes				
Upon c	ompletion of the course, the student should be able to:				
1. Explai	n the characteristics of transmission lines and its losses				
2. Write	about the standing wave ratio and input impedance in h	igh			
freque	ncytransmission lines				
3. Analyz	e impedance matching by stubs using smith charts				
4. Analyz	e the characteristics of TE and TM waves				
5. Design	a RF transceiver system for wireless communication				
Unit 1-Trans	nission Line Theory			9	
General theor	y of Transmission lines - the transmission line - gene	eral s	olutic	on -	The
infinite line -	Wavelength, velocity of propagation - Waveform distortion	ion -	the d	istort	ion-
less line - Loa	ding and different methods of loading - Line not terminate	d in Z	20 - R	eflec	tion
coefficient - c	alculation of current, voltage, power delivered and efficie	ncy o	f tran	smis	sion
- Input and tr	ansfer impedance - Open and short circuited lines - re	eflecti	ion fa	ctor	and
reflection loss					
Unit 2-High I	roquoney Transmission Lines			0	
			X 7 1	7	1

Transmission line equations at radio frequencies - Line of Zero dissipation - Voltage and current on the dissipation-less line, Standing Waves, Nodes, Standing Wave Ratio - Input impedance of the dissipation-less line - Open and short circuited lines - Power and impedance measurement on lines - Reflection losses - Measurement of VSWR and wavelength.

Unit 3-Impedance Matching In High Frequency Lines

Impedance matching: Quarter wave transformer - Impedance matching by stubs - Single stub and double stub matching - Smith chart - Solutions of problems using Smith chart - Single and double stub matching using Smith chart.

Unit 4-Waveguides

General Wave behavior along uniform guiding structures – Transverse Electromagnetic Waves, Transverse Magnetic Waves, Transverse Electric Waves – TM and TE Waves between parallel plates. Field Equations in rectangular waveguides, TM and TE waves in rectangular waveguides, Bessel Functions, TM and TE waves in Circular waveguides.

Unit 5-RF System Design Concepts

Active RF components: Semiconductor basics in RF, bipolar junction transistors, RF field effect transistors, High electron mobility transistors Basic concepts of RF design, Mixers, Low noise amplifiers, voltage control oscillators, Power amplifiers, transducer power gain and stability considerations.

Unit 6 – Contemporary issues

8

8

Text Books

- 1. John D Ryder, "Networks, lines and fields", 2nd Edition, Prentice Hall India, 2015. (UNIT I-IV)
- 2. Mathew M. Radmanesh, "Radio Frequency & Microwave Electronics", Pearson EducationAsia, Second Edition,2002. (UNIT V)

- 1. Reinhold Ludwig and Powel Bretchko," RF Circuit Design Theory and Applications", Pearson Education Asia, First Edition, 2001.
- 2. D. K. Misra, "Radio Frequency and Microwave Communication Circuits- Analysis andDesign", John Wiley & Sons, 2004.
- 3. E.C.Jordan and K.G. Balmain, —Electromagnetic Waves and Radiating Systems Prentice Hall of India, 2006.
- 4. G.S.N Raju, "Electromagnetic Field Theory and Transmission Lines Pearson Education, First edition 2005.

21ECED7	VI SI DESIGN I ADODATODV	L	Т	P	С
2IECEP/	VLSI DESIGN LABORATORY	0	0	4	2
 The student sl To learn and ana To fam To prov 	nould be made: In Hardware Descriptive Language(Verilog/VHDL) In the fundamental principles of VLSI circuit design in di logdomain Iliarize fusing of logical modules on FPGAs vide hands on design experience with professional design	gital n (ED/	A) pla	tforn	18
Course Outco	mes				
At the end of t	he course, the student should be able to				
1. Write A	LP Programmes for fixed and Floating Point and Arithm	netic o	operat	ions	
2. Interfac	e different I/Os with processor				
3. Generat	e waveforms using Microprocessors				
4. Execute	Programs in 8051				
5. Explain	the difference between simulator and Emulator				
LIST OF EXP	ERIMENTS:				
1. HDL b	ased design entry and simulation of Combinational circu	uits			
(a) 4-b	it Ripple Carry Adder				
(b) Car	ry Look ahead adder				
(c) Mu	ltiplexer and Demultiplexer				
(d) De	coder and Priority Encoder				
(e) Co	de Converters				
2. HDL t	ased design entry and simulation of Sequential circuits				
(a) Sni (b) Sui	It register (SISO, SIPO, PIPO)				
(0) Syl	aly and Moore model				
3 HDL	ased design entry simulation and implementation of	f Mul	tinlie	· and	
ALU.	bused design entry, simulation and imprementation of	i iviui	upner	unu	
Perfor	m Synthesis, P&R, post P&R simulation and static timir	ng ana	lvsis.		
Identi	fication of critical path	0	J		
4. Simula	tion of Static/Dynamic logic using EDA tool.				
5. Desigr	and simulation of a MOS differential amplifier.				
6. Layou	generation, parasitic extraction and post-simulation of	Invert	er		
7. Area, E	Pelay and Power estimation of Adder using EDA tool.				
	T ()		45		

21ECE16	ANTENNAS AND MICROWAVE ENGINEERING	L	T	P	<u>C</u>
Course Obie		3	U	U	3
• To ena	ble the student to understand the basic principles in anten	na a	nd mi	icrow	vave
system	design				
• To enh	ance the student knowledge in the area of various antenna	desig	ans.		
• To ent	ance the student knowledge in the area of microwave	con	none	nts	and
antenna	a for practical applications.		- r		
Course Outco	omes				
The student s	hould be able to:				
 Apply Design 	the basic principles and evaluate antenna parameters and li and assess the performance of various antennas	nk p	ower	budg	ets
3. Design	a microwave system given the application specifications.				
Unit1-Introd	uction To Microwave Systems And Antennas	_		9	
Microwave fr	equency bands, Physical concept of radiation, Near- and	far-	field	regi	ons,
Fields and Po	wer Radiated by an Antenna, Antenna Pattern Characteris	tics,	Antei	nna (Jain
and Efficiency	, Aperture Efficiency and Effective Area, Antenna Noise	e Te	mpera	iture	and
G/T,Impedanc	e matching, Frus transmission equation, Link budget and	link	marg	ın, N	oise
Characterizati	on of a microwave receiver.			0	
Unit II-Radia	tion Mechanisms And Design Aspects		D.f	9	_
Radiation Me	chanisms of Linear wire and Loop antennas, Aperture ante	innas	, Refi	ector	-
antennas, Mic	rostrip ameninas and Frequency independent ameninas, Des	ign (consid	erati	ons
Init III-Anto	lls. nno Arroys And Annlications			0	
Two-element	array Array factor Pattern multiplication Uniformly space	ed ar	raver	vith	
uniform and n	on-uniform excitation amplitudes. Smart antennas	cu ai	Tays v	vitii	
Unit IV-Passi	ve And Active Microwave Devices			8	
Microwave Pa	ssive components: Directional Coupler. Power Divider. M	agic	Tee.	U	
attenuator. res	onator. Principles of Microwave Semiconductor Devices:	Guni	1 Dioc	les.	
IMPATT diod	es, Schottky Barrier diodes, PIN diodes, Microwave tubes	: Kly	stron,	ΤŴ	T,
Magnetron.	•				
Unit V-Micro	wave Design Principles			8	
Impedance tra	nsformation, Impedance Matching, Microwave Filter Desi	gn, I	RF and	ł	
Microwave A	mplifier Design, Microwave Power amplifier Design, Low	Noi	se An	plifi	er
Design, Micro	wave Mixer Design, Microwave Oscillator Design.				
Unit 6 –Cont	emporary issues		2		
		Tot	al Ho	urs:	45
1 ext Books					
1. John D	Krauss, Ronald J Marhefka and Ahmad S. Khan, "Antenr	nas a	nd		
Wave	Propagation: Fourth Edition, Tata McGraw-Hill, 2006. (Ul	NIT	I, II,		
III).					
2. David 2012.(M. Pozar, "Microwave Engineering", Fourth Edition, Wile UNIT I,IV,V).	ey In	dia,		
References					
1. Consta	ntine A.Balanis, "Antenna Theory Analysis and Design", '	Thir	d editi	ion, J	ohn
Wiley	India Pvt Ltd., 2005.				
2. R.E.C	ollin, "Foundations for Microwave Engineering", Second e	ditio	n, IEF	EE Pi	ess,
2001.					
Course Objectives

- To study about the various optical fiber modes, configuration and transmission characteristics of optical fibers
- To learn about the various optical sources, detectors and transmission techniques
- To explore various idea about optical fiber measurements and various coupling techniques
- To enrich the knowledge about optical communication systems and networks

Course Outcomes

At the end of the course student will be able

- 1. Realize basic elements in optical fibers, different modes and configurations.
- 2. Analyze the transmission characteristics associated with dispersion and polarizationtechniques.
- 3. Design optical sources and detectors with their use in optical communicationsystem.
- 4. Construct fiber optic receiver systems, measurements and coupling techniques.
- 5. Design optical communication systems and its networks.

Unit 1-Introduction To Optical Fibers

Introduction-general optical fiber communication system- basic optical laws and definitions- optical modes and configurations -mode analysis for optical propagation through fibers- modes in planar wave guide-modes in cylindrical optical fiber-transverse electric and transverse magnetic modes- fiber materials-fiber fabrication techniques-fiber optic cables- classification of optical fiber-single mode fiber-graded index fiber.

Unit 2-Transmission Characteristic Of Optical Fiber

Attenuation-absorption --scattering losses-bending losses-core and cladding losses-signal dispersion –inter symbol interference and bandwidth-intra model dispersion-material dispersion- waveguide dispersion-polarization mode dispersion-intermodal dispersion-dispersion optimization of single mode fiber-characteristics of single mode fiber-R-I Profile- cutoff wave length-dispersion calculation-mode field diameter.

UNIT 3-Optical Sources And Detectors

Sources: Intrinsic and extrinsic material-direct and indirect band gaps-LED-LED structures- surface emitting LED-Edge emitting LED-quantum efficiency and LED power-light source materials-modulation of LED-LASER diodes-modes and threshold conditions-Rate equations-external quantum efficiency-resonant frequencies-structures and radiation patterns-single mode laser-external modulation-temperature effort.

Detectors: PIN photo detector-Avalanche photo diodes-Photo detector noise-noise sources-SNR-detector response time-Avalanche multiplication noise-temperature effects-comparisons of photo detectors.

Unit 4-Optical Receiver, Measurements And Coupling

Fundamental receiver operation-preamplifiers-digital signal transmission-error sources-Front end amplifiers-digital receiver performance-probability of error-receiver sensitivityquantum limit.

Optical power measurement-attenuation measurement-dispersion measurement- Fiber Numerical Aperture Measurements- Fiber cut- off Wave length Measurements- Fiber diameter measurements-Source to Fiber Power Launching-Lensing Schemes for Coupling Management-Fiber to Fiber Joints-LED Coupling to Single Mode Fibers-Fiber Splicing-Optical Fiber connectors.

9

9

Unit 5-Optical Communication Systems And Networks

9

System design consideration Point – to –Point link design –Link power budget –rise time budget, WDM –Passive DWDM Components-Elements of optical networks-SONET/SDH-Optical Interfaces-SONET/SDH Rings and Networks-High speed light wave Links-OADM configuration-Optical ETHERNET-Soliton.

Unit 6 – Contemporary issues

Total Hours: 45

2

Text Books

- 1. P Chakrabarti, "Optical Fiber Communication", McGraw Hill Education (India)Private Limited, 2016 (UNIT I, II, III)
- 2. Gred Keiser,"Optical Fiber Communication", McGraw Hill Education (India) Private Limited. Fifth Edition, Reprint 2013. (UNIT I, IV, V)

- 1. John M.Senior, "Optical fiber communication", Pearson Education, second edition.2007.
- 2. Rajiv Ramaswami, "Optical Networks", Second Edition, Elsevier, 2004.
- 3. J.Gower, "Optical Communication System", Prentice Hall of India, 2001.
- 4. Govind P. Agrawal, "Fiber-optic communication systems", third edition, John Wiley & sons, 2004.

21ECE18	EMBEDDED AND REAL TIME SYSTEMS		<u>T</u>	P 0	<u>C</u>
Course Objec	tives	3	U	U	3
• Unders	stand the concepts of embedded system design and analysis	\$			
Learn t	the architecture and programming of ARM processor	,			
• Be exposed to the basic concepts of embedded programming					
• Learn	the real time operating systems				
Course Outco	omes				
At the end of t	he course student will be able				
1. Descri	be the architecture and programming of ARM processor				
2. Outline	e the concepts of embedded systems				
4 Model	real-time applications using embedded-system concepts				
4. Wodel	real-time applications using emocuded-system concepts				
example: Mod Analysis – Spa techniques - D platform-level	el train controller- Design methodologies- Design flows - ecifications-System analysis and architecture design – Qua resigning with computing platforms – consumer electronics performance analysis.	Requ lity A s arch	vireme Assura nitecti	ant ance ure –	
Unit 2-Arm P ARM Architec Subroutines – Width Modula	Processor And Peripherals cture Versions – ARM Architecture – Instruction Set – Star Features of the LPC 214X Family – Peripherals – The Tim tion Unit – UART – Block Diagram of ARM9 and ARM (cks a 1er U Corte	nd nit – ex M3	9 Pulse MC	e U.
Unit 3-Embed Components for – compilation optimization – optimization of	Ided Programming or embedded programs- Models of programs- Assembly, li techniques- Program level performance analysis – Softwar Program level energy and power analysis and optimizatio f program size- Program validation and testing.	nking e per n – A	g and rform Analys	9 load ance sis ar	ing nd
Unit 4-Real T Structure of a Scheduling – I Synchronisatio	Time Systems Real Time System — Estimating program run times – Tas Fault Tolerance Techniques – Reliability, Evaluation – Clo on.	k Ass ck	signm	8 nent a	and

Unit 5-Processes And Operating Systems

Introduction – Multiple tasks and multiple processes – Multirate systems- Preemptive realtime operating systems- Priority based scheduling- Interprocess communication mechanisms

- Evaluating operating system performance- power optimization strategies for processes – Example Real time operating systems-POSIX-Windows CE. - Distributed embedded systems
- MPSoCs and shared memory multiprocessors. Design Example Audio player, Engine control unit Video accelerator.

Unit 6 – Contemporary issues

2

8

Total Hours: 45

Text Books

- 1. Marilyn Wolf, "Computers as Components Principles of Embedded Computing System Design", Third Edition "Morgan Kaufmann Publisher (An imprint from Elsevier), 2012. (UNIT I, II, III, V)
- 2. Jane W.S.Liu," Real Time Systems", Pearson Education, Third Indian Reprint, 2003.(UNIT IV)

- 1. Lyla B.Das, "Embedded Systems : An Integrated Approach" Pearson Education, 2013.
- 2. Jonathan W.Valvano, "Embedded Microcomputer Systems Real Time Interfacing", Third Edition Cengage Learning, 2012.
- 3. David. E. Simon, "An Embedded Software Primer", 1st Edition, Fifth Impression, Addison- Wesley Professional, 2007.
- 4. Raymond J.A. Buhr, Donald L.Bailey, "An Introduction to Real-Time Systems-From Design to Networking with C/C++", Prentice Hall, 1999.
- 5. C.M. Krishna, Kang G. Shin, "Real-Time Systems", International Editions, Mc Graw Hill 1997
- 6. K.V.K.K.Prasad, "Embedded Real-Time Systems: Concepts, Design & Programming", Dream Tech Press, 2005.
- 7. Sriram V Iyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata Mc Graw Hill, 2004.

	CEP8	EMBEDDED LABORATORY	L	T	P	<u>C</u>
Carro		4:	0	0	2	I
Cours	se Objec	auld ha mada tay				
The st	L corn f	be working of ADM processor				
•	Learn	tend the Duilding Diacks of Embedded Systems				
•	Unders	ha concept of memory mon and memory interface				
•	Write r	The concept of memory map and memory miteriace V_{0} with processor				
•	Study t	ho interrupt performance				
•	Study i	ne merrupi performance				
Cours	e Outco	omes				
	At the	end of the course student will be able				
1.	Write p	rograms in ARM for a specific Application				
2.	Interfac	e memory, A/D and D/A convertors with ARM system				
3.	Analyz	e the performance of interrupt				
4.	Write p	rogram for interfacing keyboard, display, motor and sensor.				
5.	Formul	ate a mini project using embedded system				
LIST	OF EXP	ERIMENTS:				
LIST	OF EXP	ERIMENTS: Study of ARM evaluation system				
LIST	OF EXP 1. 2.	ERIMENTS: Study of ARM evaluation system Interfacing ADC and DAC.				
LIST	OF EXP 1. 2. 3.	ERIMENTS: Study of ARM evaluation system Interfacing ADC and DAC. Interfacing LED and PWM.				
LIST	OF EXP 1. 2. 3. 4.	ERIMENTS: Study of ARM evaluation system Interfacing ADC and DAC. Interfacing LED and PWM. Interfacing real time clock and serial port.				
LIST	OF EXP 1. 2. 3. 4. 5.	ERIMENTS: Study of ARM evaluation system Interfacing ADC and DAC. Interfacing LED and PWM. Interfacing real time clock and serial port. Interfacing keyboard and LCD.				
LIST	OF EXP 1. 2. 3. 4. 5. 6.	ERIMENTS: Study of ARM evaluation system Interfacing ADC and DAC. Interfacing LED and PWM. Interfacing real time clock and serial port. Interfacing keyboard and LCD. Interfacing EPROM and interrupt.				
LIST	0F EXP 1. 2. 3. 4. 5. 6. 7.	ERIMENTS: Study of ARM evaluation system Interfacing ADC and DAC. Interfacing LED and PWM. Interfacing real time clock and serial port. Interfacing keyboard and LCD. Interfacing EPROM and interrupt. Mailbox.				
LIST	OF EXP 1. 2. 3. 4. 5. 6. 7. 8.	ERIMENTS: Study of ARM evaluation system Interfacing ADC and DAC. Interfacing LED and PWM. Interfacing real time clock and serial port. Interfacing keyboard and LCD. Interfacing EPROM and interrupt. Mailbox. Interrupt performance characteristics of ARM and FPGA.				
LIST	OF EXP 1. 2. 3. 4. 5. 6. 7. 8. 9.	ERIMENTS: Study of ARM evaluation system Interfacing ADC and DAC. Interfacing LED and PWM. Interfacing real time clock and serial port. Interfacing keyboard and LCD. Interfacing EPROM and interrupt. Mailbox. Interrupt performance characteristics of ARM and FPGA. Flashing of LEDS.				
LIST	OF EXP 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	ERIMENTS: Study of ARM evaluation system Interfacing ADC and DAC. Interfacing LED and PWM. Interfacing real time clock and serial port. Interfacing keyboard and LCD. Interfacing EPROM and interrupt. Mailbox. Interrupt performance characteristics of ARM and FPGA. Flashing of LEDS. Interfacing stepper motor and temperature sensor.				
LIST	OF EXP 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	ERIMENTS: Study of ARM evaluation system Interfacing ADC and DAC. Interfacing LED and PWM. Interfacing real time clock and serial port. Interfacing keyboard and LCD. Interfacing EPROM and interrupt. Mailbox. Interrupt performance characteristics of ARM and FPGA. Flashing of LEDS. Interfacing stepper motor and temperature sensor. Implementing zigbee protocol with ARM.				
LIST	0F EXP 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	ERIMENTS: Study of ARM evaluation system Interfacing ADC and DAC. Interfacing LED and PWM. Interfacing real time clock and serial port. Interfacing keyboard and LCD. Interfacing EPROM and interrupt. Mailbox. Interrupt performance characteristics of ARM and FPGA. Flashing of LEDS. Interfacing stepper motor and temperature sensor. Implementing zigbee protocol with ARM.				

21ECEP9

ADVANCED COMMUNICATION LABORATORY

L	Т	Р	С
0	0	2	1

Course Objectives

The student should be made to:

- Understand the working principle of optical sources, detector, fibers
- Develop understanding of simple optical communication link
- Understand the measurement of BER, Pulse broadening
- Understand and capture an experimental approach to digital wireless communication
- Understand actual communication waveforms that will be sent and received across wireless channel

Course Outcomes

At the end of the course student will be able

- 1. Measurement of connector, bending and fiber attenuation losses.
- 2. Numerical Aperture and Mode Characteristics of Fibers.
- 3. DC Characteristics of LED and PIN Photo diode.
- 4. Fiber optic Analog and Digital Link Characterization frequency response(analog), eye diagram and BER (digital)

LIST OF EXPERIMENTS:

LIST OF OPTICAL EXPERIMENTS

- 1. Measurement of connector, bending and fiber attenuation losses.
- 2. Numerical Aperture and Mode Characteristics of Fibers.
- 3. DC Characteristics of LED and PIN Photo diode.
- 4. Fiber optic Analog and Digital Link Characterization frequency response(analog), eye diagram and BER (digital)

LIST OF WIRELESS COMMUNICATION EXPERIMENTS

- 1. Wireless Channel Simulation including fading and Doppler effects
- 2. Simulation of Channel Estimation, Synchronization & Equalization techniques
- 3. Analysing Impact of Pulse Shaping and Matched Filtering using Software Defined Radios
- 4. OFDM Signal Transmission and Reception using Software Defined Radios

Total Hours: 30

PROFESSIONAL ELECTIVE I

21ECE20	MEDICAL ELECTRONICS	L	T	P	C
Course Object	tivos	3	0	0	3
• To gain kno	uves	urem	ents		
 To understa 	and the various biochemical and nonelectrical sensors		lents		
 To study ab 	out the assist devices				
• To gain kno	owledge on surgical equipment's and telemetry in healthca	re			
• To understand the concepts of recent advancements in healthcare.					
Course Outco	mes				
At the end of t	he course student will be able				
1. Explain the	electro- physiological parameters and bio-potentials recor	ding			
2. Measure the	e biochemical and non-electrical physiological parameters				
3. Interpret the	e various assist devices used in the hospitals				
4. Identify pir	vent trends in medical instrumentation				
Unit 1 - Electr	n-Physiology and Bio-Potential Recording			9	
Sources of b	io medical signals. Bio-potentials. Bio potential elec	etrod	es. b	iolos	vical
amplifiers, EC	G, EEG, EMG, PCG, typical waveforms and signal charac	teris	tics	10102	,
Unit 2 - Bio-cl	nemical and Non Electrical Parameter Measurement			9	
pH, PO2, PC	O2, Colorimeter, Blood flow meter, Cardiac output,	resp	irator	y, bl	ood
pressure, temp	erature and pulse measurement, Blood Cell Counters.				
Unit 3 - Assist	Devices			8	
Artificial kidne monitoring and	ey, Dialysis action, hemodialyser unit, membrane dialysis I functional parameters, Heart-Lung Machine.	s, po	rtable	dial	yser
Unit 4 - Physi	cal Medicine and Biotelemetry			Q	
Diathermies -	Shortwave, ultrasonic and microwave type and their apr	olicat	ions	Surg	rical
Diathermy, Bio	otelemetry - Single Channel and Multiple Channel.	, iicu	.10115,	5 41 5	,ioui
Unit 5 - Recer	t Trends in Medical Instrumentation		8		
Telemedicine,	Insulin Pumps, Radio pill, Endo-microscopy, Brain mac	nine	interf	ace,	Lab
on a chip, Cryo	ogenic Technique.			,	
Unit 6 –Conte	mporary issues			2	
	Total Hour	s: 45			
Text Books					
1. Leslie C India, N	Cromwell, "Biomedical Instrumentation and Measurement lew Delhi, 2011.	:", Pi	rentic	e Ha	ll of
2. Khandp New De	ur, R.S., "Handbook of Biomedical Instrumentation", TA	TA	McGi	raw-l	Hill,
3. John G.	Webster, "Medical Instrumentation Application and Designdia 2012	gn",	Third	Edit	ion,
References	iluia, 2012.				
1 Joseph	LCarr and John M.Brown, "Introduction to Biom	edics	al Ec	nuinn	nent
Techno	logy", John Wiley and Sons, New York, 2011.	00100		1 ^m P ^{II}	iviit
2. R.Anan Edition.	danatarajan, "Biomedical Instrumentation and Measu PHI Learning, 2016.	reme	ents",	Sec	ond

- 3. Mandeep singh, "Introduction to Biomedical Instrumentation", Second Edition, Prentice Hall of India, New Delhi,2014
- 4. Shakti Chatterjee, Aubert Miller, "Biomedical Instrumentation Systems", Cengage Learning, 2012
- 5. C.Raja Rao, Sujoy K.Guha, "Principles of Medical Electronics and Biomedical Instrumentation", Universities Press, 2010

21FCF21	ROBOTICS AND AUTOMATION	L	Τ	P	С
		3	0	0	3
 To introduce To analyze To understate To Manipute To understate 	te basic components required for Robot different control mechanism applied for Robotics and the concept of path planning in Robotics late forward and inverse kinematics and application of robots in various fields				
Course OutcoAt the end of t1. Describe th2. Demonstra3. Explain path4. Demonstrate aDemonstrate a	he course student will be able the course student will be able the components required for robotics the control mechanism required for Robotics the planning of Robotics the forward and inverse kinematics pplication of Robots in industrial and other application duction 9				
Unit 1 - Introduction 9 Robotics – Basic components – Classification – Performance characteristics – Actuators- Electric actuator- DC motor horse power calculation, magnetostrictive hydraulic and pneumatic actuators. Sensors and vision systems: Different types of robot transducers and sensors – Tactile sensors – Proximity and range sensors – ultrasonic sensor-touch sensors- slip sensors-sensor calibration- vision systems – Image processing and analysis – image data reduction – segmentation feature extraction – Object recognition.					and and ors- nage
Unit 2 - Robo Control of rob single axis PI control- Imped	t Control ot manipulators- state equations-constant solutions-linear D control- PD gravity control- computed torque control- lance control	feed - var	lback iable	8 syste struc	ems- cture
Unit 3 - End I End effectors – Robot end pick and place	Effectors and tools– types – Mechanical grippers – Vacuum cups – effectors interface, workspace analysis work envelope-w operation- continuous path motion interpolated motion- se	Maş vorks traig	gnetic space ht line	9 grip fixtu mot	pers ires- tion.
Unit 4 - Robo Robot motion kinematics- an and Robot dyn	t Motion Analysis a analysis and control: Manipulator kinematics –for orm equation-link coordinates- Homogeneous transformat amics.	ward tions	and and	8 inv rotat	erse ions
Unit 5 - Robo Industrial and Controlled ro automation – 7	t Applications Non industrial robots, Robots for welding, painting and a bots – Robots for nuclear, thermal and chemical p Typical examples of automated industries.	issen lants	9 nbly – 5 – I	- Rer ndus	note trial
Unit 6 –Conte	emporary issues ``````````````````````````````````	s: 45	5	2	

Text Books

 Mikel P. Grover, 'Industrial Robots – Technology Programming and Applications', second edition, McGraw Hill, 2012

2. Robert J.Schilling 'Fundamentals of Robotics-Analysis and Control', PHI, 2015,

3. R.K.Mittal and I.J.Nagrath, Robotics and Control, Tata McGraw Hill, New Delhi,4th Reprint, 2005.

- 1. K.S.Fu,R.C.Gonzalez, CSG. Lee, "Robotics, Control sensing vision and Intelligence", Tata Mcgraw-Hill, Indian edition, 2008.
- 2. JohnJ.Craig, "Introduction to Robotics Mechanics and Control", Third edition, Pearson Education 2009.
- 3. M.P.Groover, M.Weiss, R.N. Nageland N. G.Odrej, "Industrial Robotics", McGraw-Hill, Singapore, 2007
- 4. Ashitava Ghoshal, "Robotics-Fundamental Concepts and Analysis", Oxford University Press, Sixth impression, 2010
- 5. B.K.Ghosh, "Control in Robotics and Automation: Sensor Based Integration", Allied Publishers, Chennai,

21ECE22

NANO TECHNOLOGY AND APPLICATIONS

L	Т	Р	C
3	0	0	3

Course Objectives

- To understand the basic concepts of Nanotechnology
- To obtain a broad idea on fundamentals of Nano electronics
- To study the channel and gate effect of MOS system
- To analyze the process involved in carbon nanotubes
- To study the recent trends of Nano devices in the industry

Course Outcomes

At the end of the course student will be able

- 1. Defines the basic concepts of nanotechnology
- 2. Explains the conceptual ideas behind Nano electronics
- 3. Describes the concepts of Silicon MOSFET and quantum transport devices
- 4. Get a clear idea on process involved in carbon nanotubes and their properties
- 5. Be familiar with molecular electronics and future applications

Unit 1 - Introduction to Nanotechnology

Background to nanotechnology: Types of nanotechnology and nano machines; Molecular, Nanotechnology: Electron microscope-scanning electron microscope-atomic force microscope- scanning tunneling microscope-nano manipulator-nano tweezers-atom manipulation-nano dots; Top down and bottom-up approaches: self-assembly-dip pen nano lithography. Nanomaterials: preparation-plasma arcing-chemical vapor deposition-sol-gels-electrode position ball milling

Unit 2 - Fundamentals of Nanoelectronics

Fundamentals of logic devices: -Requirements-dynamic properties-threshold gates; physical limits to computations; concepts of logic devices:-classifications-two terminal devices-field effect devices-coulomb blockade devices-spintronics-quantum dot cellular automata-quantum computing-DNA computer, Ultimate computation:-power dissipation limit-dissipation in reversible computation.

Unit 3 - Silicon MOSFETS

Silicon MOSFETS-Novel materials and alternate concepts:-fundamentals of MOSFET Devices-scaling rules-silicon-dioxide based gate dielectrics-metal gates-junctions & contacts-advanced MOSFET concepts. Quantum transport devices based on resonant tunneling:-Electron tunneling-resonant tunneling diodes-resonant tunneling devices; Single electron devices for logic applications:-Single electron devices

Unit 4 - Carbon Nanotubes8

Fullerenes-types of nanotubes-formation of nanotubes-assemblies-purification of carbon nanotubes-electronic properties-synthesis of carbon nanotubes-carbon nanotube interconnects carbon nanotube FETs-Nanotube for memory applications.

Unit 5 - Molecular Electronics

Electrodes & contacts-functions-molecular electronic devices-first test systems-simulation and circuit design-fabrication; Future applications.

Unit 6 – Contemporary issues

Total Hours: 45

Text Books

1. Michael Wilson, KamaliKannangara, Geoff Smith, Michelle Simmons and Burkhard Raguse, Chapman & Hall 'Nanotechnology: Basic Science and Emerging

9

8

2

Technologies', CRC, 2002

- 2. T.Pradeep, "NANO: The Essentials-Understanding Nanoscience and Nanotechnology" TMH,2007
- 3. Prof. Marc Baldo, "Introduction to Nanoelectronics", TMH,2010

- 1. Rainer Waser (Ed.), "Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices", Wiley-VCH,2012
- 2. George W. Hanson, "Fundamentals of Nano Electronics", Prentice Hall,2008
- 3. Vladimir V. Mitin, ,Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics", Cambridge University Press, 2012
- 4. Manoj Kumar Majumder, Vijay Rao Kumbhare, Brajesh Kumar Kaushik, "Introduction to Microelectronics to Nano Electronics -Design and Technology", CRC Press,2020
- 5. Vladimir V Mitin, Viatcheslav A Kochelap, Introduction to Nanoelectronics, applications, Cambridge University Press, 2018

21ECE23

OBJECT ORIENTED PROGRAMMING

L	Т	Р	С
3	0	0	3

9

Course Objectives

- To understand Object Oriented Programming concepts and basic characteristics of Java
- To know the principles of packages, inheritance, and interfaces
- To define exceptions and use I/O streams
- To develop a java application with threads and generics classes
- To design and build simple Graphical User Interfaces

Course Outcomes

At the end of the course student will be able

- 1. Develop Java programs using OOP principles
- 2. Develop Java programs with the concepts inheritance and interfaces
- 3. Build Java applications using exceptions and I/O streams
- 4. Develop Java applications with threads and generics classes
- 5. Develop interactive Java programs using swings

Unit 1 - Introduction to OOP and JAVA Fundamentals

Object Oriented Programming - Abstraction – objects and classes - Encapsulation-Inheritance - Polymorphism- OOP in Java – Characteristics of Java – The Java Environment - Java Source File -Structure – Compilation. Fundamental Programming Structures in Java – Defining classes in Java – constructors, methods -access specifiers static members -Comments, Data Types, Variables, Operators, Control Flow, Arrays, Packages - JavaDoc comments.

Unit 2 - Inheritance and Interfaces

Inheritance – Super classes- sub classes –Protected members – constructors in sub classesthe Object class – abstract classes and methods- final methods and classes – Interfaces – defining an interface, implementing interface, differences between classes and interfaces and extending interfaces - Object cloning -inner classes, Array Lists – Strings

Unit 3 - Exception Handling and I/O

Exceptions - exception hierarchy - throwing and catching exceptions – built-in exceptions, creating own exceptions, Stack Trace Elements. Input / Output Basics – Streams – Byte streams and Character streams – Reading and Writing Console – Reading and Writing Files

Unit 4 - Multithreading and Generic Programming

Differences between multi-threading and multitasking, thread life cycle, creating threads, synchronizing threads, Inter-thread communication, daemon threads, thread groups. Generic Programming – Generic classes – generic methods – Bounded Types – Restrictions and Limitations.

Unit 5 - Event Driven Programming

Graphics programming - Frame – Components - working with 2D shapes - Using color, fonts, and images - Basics of event handling - event handlers - adapter classes - actions - mouse events - AWT event hierarchy - Introduction to Swing – layout management - Swing Components – Text Fields, Text Areas – Buttons- Check Boxes – Radio Buttons – Lists- choices- Scrollbars – Windows –Menus – Dialog Boxes.

Unit 6 – Contemporary issues

Total Hours: 45

Text Books

1. Herbert Schildt, "Java The complete reference", 8th Edition, McGraw Hill Education,

8

8

9 5 C

2011.

2. Cay S. Horstmann, Gary cornell, "Core Java Volume –I Fundamentals", 9th Edition, Prentice Hall, 2013.

- 1. Paul Deitel, Harvey Deitel, "Java SE 8 for programmers", 3rd Edition, Pearson, 2015.
- 2. Steven Holzner, "Java 2 Black book", Dreamtech press, 2011.
- 3. Timothy Budd, "Understanding Object-oriented programming with Java", Updated Edition, Pearson Education, 2000.

21ECE24

NUMERICAL ANALYSIS USING MATLAB

Course Objectives

- To understand basic representation of Matrices and vectors in MATLAB; •
- To learn various program- ming structures in MATLAB; •
- To study built in and user defined functions in MATLAB; •
- To become conversant with 2D as well as 3D graphics in MATLAB;
- To make a Graphical User Interface (GUI) in MATLAB to achieve interactivity •

Course Outcomes

At the end of the course student will be able

- 1. Explain the various programming structures, functions, and data types in MATLAB
- 2. Apply MATLAB for real time applications with the ability to plot on graphics and design in- teractive GUI
- 3. Develop an understanding of MATLAB for designing systems as per requirements
- 4. Work as part of a team and as individual effectively in applying MATLAB as a tool following the safety procedures and ethics
- 5. Find, interpret and communicate documentation related to MATLAB programming.

Unit 1 – Scalars and Vectors

Basics: MATLAB IDE – MATLAB Script Files – MATLAB Editor

Scalar variables: Approximation of numbers and discrete mathematical operations mathematical ex- pressions - Relational and Logical Operations - Complex Scalar Variables, Vector Variables: Vector creation - Relational and Logical Operations accessing elements – arithmetic operations – plotting vectors.

Unit 2 - Arrays, Functions

Creating arrays - relational and logical operations - accessing elements - arithmetic operations – plot- ting arrays Creating functions – scope of variables.

Unit 3 - Loops and Decisions, Structures

Conditional statements: 'if 'statements, 'if else' statements, recursive functions, 'if elseif else' state- ments, 'switch case' statements Loop Statements: 'for' loop statements, combined 'for' and 'if' statements, 'while' statements, 'nested for' statements, 'try and catch' Structures: Structures in MATLAB – A vector of structures.

Unit 4 – Graphic

The plotting process – Graph components – Figure tools – arranging graph within a figure - Selecting the plot types - editing plots - Basic 2D - using subplot for multiple graphs -Interactive plotting – Basic Fitting Interface – Polyfit – 3D plots – Images: reading and writing images - Saving and printing graphs - animation - GUI: Creation Fundamentals -Layout GUIDE – Programming GUIDE – Capturing mouse actions.

Unit 5 - Applications

Numeric Computation Applications: Linear Algebra - Curve Fitting and Interpolation -Data Analysis and Statistics – Numerical Integration (Ouadrature) – Ordinary Differential Equations – Non-linear Algebraic Equations (Roots of a polynomial)

Symbolic Computation Applications: The Symbolic Math Toolbox – Algebraic equations - Differentiation and Integration - Differential Equations - Laplace and Fourier Transforms Introduction to Simulink.

Unit 6 – Contemporary issues

Total Hours: 45

9

2

Text Books

- 1. MuntherGdeisat Francis Lilley, "MATLAB by example: Programming Basics", Elsevier India, 2013 (1st Edition).
- 2. Ram N Patel, Ankush Mittal, "Programming in MATLAB: A Problem-Solving Approach", Pearson India, 2014(1st Edition).

- 1. Raj Kumar Bansal, Ashok Goel, Manoj Kumar Sharma, "MATLAB and its applications in Engineering", Pearson India, 2016(2nd Edition).
- 2. William J. Palm III, "MATLAB for Engineering Applications", McGraw Hill U.S., 2019.
- 3. Huei-Huang Lee, "Programming with MATLAB 2016", SDC Publications Korea, 2016(1st Edition).

PROFESSIONAL ELECTIVE II

SOFT COMPUTING 21ECE25 L Т Р С 3 0 0 3 **Course Objectives** • To learn the basic concepts of Soft Computing • To become familiar with various techniques like neural networks, genetic algorithms and fuzzy systems. • To apply soft computing techniques to solve problems **Course Outcomes** At the end of the course, the student should be able to 1. Apply suitable soft computing techniques for various applications. 2. Integrate various soft computing techniques for complex problems. **Unit 1-Introduction To Soft Computing** 9 Introduction-Artificial Intelligence-Artificial Neural Networks-Fuzzy Systems-Genetic Algorithm and Evolutionary Programming-Swarm Intelligent Systems-Classification of ANNs-McCulloch and Pitts Neuron Model-Learning Rules: Hebbian and Delta- Perceptron Network-Adaline Network-Madaline Network. **Unit 2-Artificial Neural Networks** Back propagation Neural Networks - Kohonen Neural Network -Learning Vector Quantization -Hamming Neural Network - Hopfield Neural Network- Bi-directional Associative Memory -Adaptive Resonance Theory Neural Networks- Support Vector Machines - Spike Neuron Models. **Unit 3-Fuzzy Systems** Introduction to Fuzzy Logic, Classical Sets and Fuzzy Sets - Classical Relations and Fuzzy Relations -Membership Functions -Defuzzification - Fuzzy Arithmetic and Fuzzy Measures - Fuzzy Rule Base and Approximate Reasoning - Introduction to Fuzzy Decision Making. 9 **Unit 4-Genetic Algorithms** Basic Concepts- Working Principles -Encoding- Fitness Function - Reproduction -Inheritance Operators - Cross Over - Inversion and Deletion - Mutation Operator - Bit-wise Operators -Convergence of Genetic Algorithm. **Unit 5-Hybrid Systems** Hybrid Systems -Neural Networks, Fuzzy Logic and Genetic -GA Based Weight Determination - LR-Type Fuzzy Numbers - Fuzzy Neuron - Fuzzy BP Architecture -Learning in Fuzzy BP- Inference by Fuzzy BP - Fuzzy ArtMap: A Brief Introduction - Soft Computing Tools - GA in Fuzzy Logic Controller Design - Fuzzy Logic Controller **Total Hours: 45 Text Books** 1. N.P.Padhy, S.P.Simon, "Soft Computing with MATLAB Programming", Oxford University Press, 2015.

- 2. S.N.Sivanandam ,S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt.Ltd., 2nd Edition, 2011.
- 3. S.Rajasekaran, G.A.VijayalakshmiPai, "Neural Networks, Fuzzy Logic and Genetic

Algorithm, Synthesis and Applications ", PHI Learning Pvt.Ltd., 2017.

- 1. Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, "Neuro-Fuzzy and Soft Computing", Prentice-Hall of India, 2002.
- 2. KwangH.Lee, "First course on Fuzzy Theory and Applications", Springer, 2005.
- 3. George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice Hall, 1996.
- 4. James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Addison Wesley, 2003.

Course Objectives

The student should be made to:

To enable the students to study the evolution of Management, to study the functions and principles of management and to learn the application of the principles in an organization.

Course Outcomes

At the end of the course, the student should be able to:

Managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

Unit 1 – Introduction To Management And Organizations

Definition of Management - Science or Art - Manager Vs Entrepreneur - types of managers -managerial roles and skills - Evolution of Management - Scientific, human relations, system and contingency approaches -Types of Business organization- Sole proprietorship, partnership, company-public and private sector enterprises - Organization culture and Environment – Currenttrends and issues in Management.

Unit 2-Planning

Nature and purpose of planning – planning process – types of planning – objectives – settingobjectives-policies-Planningpremises-StrategicManagement-PlanningToolsandTechniques-Decisionmakingsteps and process.

Unit 3-Organising

Nature and purpose-Formal and informal organization-organization chart organization structure - types - Line and staff authority - departmentalization delegation of authority -centralization and decentralization - Job Design - Human Resource Management - HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planningandmanagement

Unit 4-Directing

Foundations of individual and group behaviour - motivation - motivation theories motivationaltechniques - job satisfaction - job enrichment - leadership - types and theories of leadership -communication- process of communication- barrier incommunication-effectivecommunication -communication and IT.

Unit 5-Controlling

System and process of controlling – budgetary and non-budgetary control techniques - use of computers and IT in Management control - Productivity problems and management - control andperformance-directandpreventivecontrol-reporting.

Total Hours: 45

Text Books

- 1. Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India) Pvt. Ltd., 10th Edition, 2009.
- 2. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", Pearson Education, 6th Edition, 2004.

9

9

- 1. Stephen A. Robbins & David A. Decenzo& Mary Coulter, "Fundamentals of Management" Pearson Education, 7th Edition, 2011.
- 2. Robert Kreitner&MamataMohapatra, "Management", Biztantra, 2008.
- 3. Harold Koontz & Heinz Weihrich "Essentials of management" Tata McGraw Hill,1998.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata McGraw Hill, 1999

21ECE27	COMPUTER ARCHITECTURE AND	L	Т	Р	С	
	ORGANIZATION	3	0	0	3	
 Course Objectives To make students understand the basic structure and operation of digital computer To familiarize with implementation of fixed point and floating-point 						
 To faminatize with implementation of fixed point and noating-point arithmetic operations To study the design of data path unit and control unit for processor To understand the concept of various memories and interfacing To introduce the parallel processing technique 						
Course Outcomes At the end of the course, the student should be able to • Describe data representation, instruction formats and the operation of a digital					gital	
 Describe data representation, instruction formats and the operation of a digital computer Illustrate the fixed point and floating-point arithmetic for ALU operation Discuss about implementation schemes of control unit and pipeline performance Explain the concept of various memories, interfacing and organization of multiple processors Discuss parallel processing technique and unconventional architectures 					eline 1 of	
Unit 1-Computer Organization & Instructions9Basics of a computer system: Evolution, Ideas, Technology, Performance, Powerwall, Uniprocessors to Multiprocessors. Addressing and addressing modes.Instructions: Operations and Operands, Representing instructions, Logical operations, control operations.						
Unit 2-Arithm Fixed point A arithmetic, Hig	netic Addition, Subtraction, Multiplication and Division.Fl gh performance arithmetic,Sub word parallelism.	oatiı	ng Po	9 int		
Unit 3-The processor9Introduction, Logic Design Conventions, Building a Datapath - A SimpleImplementation scheme -An Overview of Pipelining - Pipelined Datapath and Control. Data Hazards: Forwarding versus Stalling,Control Hazards,Exceptions,Parallelism via Instructions.						
Unit 4-Memory and I/O Organization9Memory hierarchy, Memory Chip Organization, Cache memory, Virtual memory.Parallel Bus Architectures, Internal Communication Methodologies, Serial Bus Architectures, Mass storage, Input and Output Devices.						
Unit 5- Advar	nced Computer architecture			9		
Parallel proc Multicore and Units, Cluster network topole	essing architectures and challenges, Hardware muscle sharedmemory multiprocessors, Introduction to Graphic rs and Warehousescalecomputers –Introduction to Mogies.	ultith s Pr ultip	nreadin ocessi process	ng, ing sor		

Total Hours: 45

Text Books

- 1. David A. Patterson and John L. Hennessey, "Computer Organization and Design", Fifth edition, Morgan Kauffman / Elsevier, 2014. (UNIT I-V)
- 2. Miles J. Murdocca and Vincent P. Heuring, "Computer Architecture and Organization: An Integrated approach", Second edition, Wiley India Pvt Ltd, 2015 (UNIT IV,V)

- 1. V. Carl Hamacher, Zvonko G. Varanesic and Safat G. Zaky, "Computer Organization",
- 2. William Stallings "Computer Organization and Architecture", Seventh Edition, Pearson Education, 2006.
- 3. Govindarajalu, "Computer Architecture and Organization, Design Principles and Applications", Second edition, McGraw-Hill Education India Pvt Ltd, 2014.

21ECE28	
---------	--

MULTIMEDIA COMPRESSION AND COMMUNICATION

Course Objectives

The student should be made:

- To understand the compression schemes for text, voice, image and video
- To understand the QoS issues in multimedia network
- To know the communication protocols for multimedia networking

Course Outcomes

At the end of the course, the student should be able to

- 1. Design audio compression techniques
- 2. Configure Text, image and video compression techniques
- 3. Select suitable service model for specific application
- 4. Configure multimedia communication network

Unit 1-Audio Compression

Sampling and Quantization of Speech (PCM) - Adaptive differential PCM - Delta Modulation -Vector Quantization- Linear predictive coding(LPC) – Code excited Linear predictive Coding(CELP)

Unit 2-Image And Video Compression

Graphics Interchange format- Tagged image file format-Digitized documents-Digitized pictures- JPEG- Video Encoding-Motion estimation–Overview of H.263 and MPEG-2

Unit 3-Text Compression

Staticand Dynamic Huffman coding –Arithmetic coding–Lempel-Ziv coding–LZWcoding

Unit 4-Guaranteed Service Model

Best Effort service model–Scheduling and Dropping policies–Network Performance Parameters-Quality of Service and metrics – WFQ and its variants – Random Early Detection – QoS aware Routing – Admission Control – Resource Reservation – RSVP -Traffic Shaping Algorithms –Caching–Laissez Faire Approach-Possible Architectures– An Overview of QoS Architectures

Unit 5-Multimedia Communication

Stream characteristics for Continuous media–Temporal Relationship–Object Stream Interactions,Media Levity,Media Synchronization–Models forTemporal Specifications–Streaming of Audio and Video – Jitter – Fixed playout and Adaptive playout – Recovering frompacketloss–RTSP–Multimedia Communication Standards–RTP/RTCP–SIPand H.263

Total Hours: 45

Text Books

1. FredHalsall -Multimediacommunication-Applications, Network Protocols and Standards, Pearson education, 2007.

References

10

7

9

- 1. Tay Vaughan, —Multimedia Making it work, McGraw-Hill Osborne Media, 2006.
- 2. Kurose and W. Ross, —Computer Networking —A Top Down Approach, Pearson education, 3rd ed, 2005.
- 3. KR. Rao,Z S Bojkovic, D A Milovanovic, —Multimedia Communication Systems: Techniques, Standards, and Networksl, Pearson Education 2007
- 4. R. Steimnetz, K. Nahrstedt, —Multimedia Computing, Communications and Applications|, Pearson Education, First ed, 1995.
- 5. Nalin K Sharda, 'Multimedia Information Networking', Prentice Hall of India, 1999
- Aura Ganz, Zvi Ganz and KittiWongthawaravat, 'Multimedia WirelessNetworks: Technologies, Standards and QoS', Prentice Hall, 2003.
- 7. Ellen Kayata Wesel, 'Wireless Multimedia Communications: Networking Video, Voice and Data', Addision Wesley, 1998

CMOS ANALOG IC DESIGN

L	Т	Р	C
3	0	0	3

Course Objectives

- To study the fundamentals of analog circuits and MOS device models
- To gain knowledge on various configurations of MOS transistors and feedback concepts
- To study the characteristics of noise and frequency response of the amplifier
- To learn the concepts of Op-Amp frequency compensation, capacitor switches and PLLs.

Course Outcomes

Upon completion of the course, student should be able to:

- 1. Realize the concepts of Analog MOS devices and current mirror circuits.
- 2. Design different configuration of Amplifiers and feedback circuits.
- 3. Analyze the characteristics of frequency response of the amplifier and its noise.
- 4. Analyze the performance of the stability and frequency compensation techniques of Op- Amp Circuits.
- 5. Construct switched capacitor circuits and PLLs.

Unit 1–Introduction to Analog IC Design and current mirrors

Concepts of Analog Design - General consideration of MOS devices – MOS I/V Characteristics –Second order effects –MOS device models. Basic current mirrors- Cascode current mirrors-Active current mirrors-Large and Small signal analysis-Common mode properties.

Unit 2-Amplifiers And feedback

Basic Concepts – Common source stage- Source follower- Common gate stage- Cascode stage.Single ended and differential operation-BasicDifferential pair-Common mode response-Differential pair with MOS loads- Gilbert Cell. Feedback- General Considerationof feedback circuits-Feedback topologies-Effect of loading-Effect of feedback on Noise.

Unit 3-Frequency Response Of Amplifiers And Noise

General considerations- Miller Effect and Association of Poles with Nodes, Common source stage- Source followers- Common gate stage- Cascode stage- Differential pair. Noise-Statistical characteristics of noise- Types of noise- Representation of noise in circuits- Noise in single stage amplifiers-Noise in differential pairs-Noise Bandwidth.

Unit 4-Operational Amplifier Stability And Frequency Compensation

General Considerations- One and Two Stage Op Amps- Gain Boosting- Comparison-Common mode feedback- Input range limitations- Slew rate- Power Supply Rejection- Noise in Op Amps-General consideration of stability and frequency compensation- Multipole system- Phase margin-Frequency compensation-Compensation of two stage op Amps-Other compensation Techniques.

Unit 5- Switched Capacitor Circuits And PLLs

General Considerations- Sampling switches- Switched Capacitor Amplifiers- Switched Capacitor Integrator-Switched Capacitor Common mode feedback. Phase Locked Loops-Simple PLL-Charge pump PLLs –Non ideal Effects in PLLs-Delay locked loops-its Applications.

9

9

9

9

Text Books

1. BehzadRazavi, "DesignofAnalogCMOSIntegratedCircuits", TataMcGrawHill, 2001, 33rdre-print, 2016.

- 1. Phillip Allen and Douglas Holmberg "CMOS Analog Circuit Design" Second Edition, Oxford University Press, 2004.
- 2. Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, Analysis and Design of Analog Integrated Circuits, 5th Edition, Wiley, 2009
- 3. Grebene, "Bipolar and MOS Analog Integrated circuit design", John Wiley & sons, Inc., 2003

Course Objectives

• To introduce and discuss various issues related to the system packaging

Course Outcomes

At the end of the course, the student should be able to:

- 1. Give a comprehensive introduction to the various packaging types used along with the associated thermal, speed, signal and integrity power issues
- 2. Enable design of packages which can withstand higher temperature, vibrations and shock
- 3. Design of PCBs which minimize the EMI and operate at higher frequency
- 4. Analyze the concepts of Testing and testing methods

Unit 1- Overview Of Electronic Systems Packaging

Functions of an Electronic Package, Packaging Hierarchy, IC packaging: MEMS packaging, consumer electronics packaging, medical electronics packaging, Trends, Challenges, Driving Forces on Packaging Technology, Materials for Microelectronic packaging, Packaging Material Properties, Ceramics, Polymers, and Metals in Packaging, Material for high density inter connect substrates

Unit 2- Electrical Issues In Packaging

Electrical Issues of Systems Packaging, Signal Distribution, Power Distribution, ElectromagneticInterference, Transmission Lines, Clock Distribution, Noise Sources, Digital and RF Issues. DesignProcess Electrical Design: Interconnect Capacitance, Resistance and Inductance fundamentals; Packaging road maps-Hybrid circuits -Resistive,Capacitive and Inductive parasitics.

Unit 3- Chip Packages

IC Assembly - Purpose, Requirements, Technologies, Wire bonding, Tape Automated Bonding, Flip Chip, Wafer Level Packaging, reliability, wafer level burn – in and test. Single chip packaging:functions, types, materials processes, properties, characteristics, trends. Multi chip packaging:types, design, comparison, trends. System –in - package(SIP); Passives: discrete, integrated, and embedded

Unit 4-PCB, Surface Mount Technology And Thermal Considerations

Printed Circuit Board: Anatomy, CAD tools for PCB design, Standard fabrication, Micro via Boards.Board Assembly: Surface Mount Technology, Through Hole Technology, Process Control and Design challenges. Thermal Management, Heat transfer fundamentals, Thermal conductivity and resistance, Conduction, convection and radiation–Cooling requirements

Unit 5- Testing

Reliability, Basic concepts, Environmental interactions. Thermal mismatch and fatigue – failures –thermo mechanically induced–electrically induced–chemically induced. Electrical Testing:Systemlevelelectrical testing,Interconnection tests, Active Circuit Testing, DesignforTestability

Total Hours: 45

Q

Text Books

9

9

1.Tummala, Rao R., Fundamentals of Microsystems Packaging, McGraw Hill, 2001

- 1. Blackwell (Ed), The electronic packaging handbook, CRC Press, 2000.
- 2. Tummala, Rao R, Microelectronics packaging handbook, McGraw Hill, 2008.
- 3. Bosshart, Printed Circuit Boards Design and Technology, TataMcGraw Hill, 1988.
- 4. R.G. Kaduskar and V.B.Baru, Electronic Product design, Wiley India, 2011
- 5. R.S.Khandpur, Printed Circuit Board, Tata McGraw Hill, 2005
- 6. Recent literature in Electronic Packaging
- Michael L. Bushnell &Vishwani D. Agrawal," Essentials of Electronic Testing for Digital, memory & Mixed signal VLSI Circuits", Kluwer Academic Publishers.2000.
- 8. M. Abramovici, M. A. Breuer, and A.D. Friedman, "Digital System Testing and Testable Design", Computer Science Press, 1990

	PROFESSIONAL ELECTIVE III				
21ECE31	CRYPTOGRAPHY AND NETWORK SECURITY	L	T	P	C
Course Obie	ctives	3	0	U	3
 To und To und Protection 	derstand Cryptography Theories, Algorithms and Systems derstand necessary Approaches and Techniques to build tion mechanisms inorder to secure computer Networks	5.			
Course Outc	omes				
At the end of	the course the student should be able to.				
 Under and vu Apply algorit Apply Apply Apply Under 	stand the fundamentals of networks security, security arch Inerabilities the different cryptographic operations of symmetric crypt hms the different cryptographic operations of public key crypt the various Authentication schemes to simulate different stand various Security practices and System security stand	nitect togra togra appli	ure, t phic phy icatio	hreat	ËS.
Unit 1-Introc	luction	larus		9	
Security tren atMultiple le services and substitution modern cryp cryptanalysis.	ds - Legal, Ethical and Professional Aspects of Security, vels, Security Policies - Model of network security - nechanisms –OSI security architecture–Classical encu techniques, transposition techniques, steganography ptography :perfect security–informationtheory–produ	Nee - Sec cyptic)Fo ct o	d for curity on te oundat crypto	Secu atta chnic tions osyst	urity icks, ques of em–
Unit 2-Symm	etric Cryptography			9	
MATHEMAT Modular arith Finite fields- Strength of D Block ciphern Standard - RC	TICS OF SYMMETRIC KEY CRYPTOGRAPHY: Alg metic-Euclid's algorithm- Congruence and matrices -Gro SYMMETRIC KEY CIPHERS: SDES – Block cipher P ES – Differential and linear cryptanalysis - Block cipher node of operation – Evaluation criteria for AES – Ad 24 –Key distribution.	ebrai oups, rincij desig vanco	c stru Rings ples c gn prin ed Er	actur s, Fie of DI ncipl ncryp	es – elds- ES – es – otion
Unit 3-Public	e Key Cryptography			9)
MATHEMAT Testing –Fact	TICS OF ASYMMETRIC KEY CRYPTOGRAPHY: For orization – Euler's totient function, Fermat's and Euler's	Prime Theo	s – l rem -	Prim Chi	ality nese

Remainder Theorem-Exponentiation and logarithm-ASYMMETRIC KEY CIPHERS:RSA cryptosystem-Key distribution-Key management-Diffie Hellman key exchange-ElGamal cryptosystem-Elliptic curve arithmetic-Elliptic curve cryptography.

Unit 4-Message Authentication And Integrity

Authentication requirement – Authentication function – MAC – Hash function – Security of Hash function and MAC - SHA -Digital signature and authentication protocols -DSS- Entity Authentication: Biometrics, Passwords, Challenge Response protocols-Authentication applications -Kerberos, X.509

Unit 5-Security Practice And System Security

Electronic Mail security–PGP, S/MIME–IP security–Web Security-SYSTEM SECURITY:Intruders–Malicious software–viruses –Firewalls.

Total Hours: 45

Text Books

1. William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006.

- 1. C K Shyamala, N Harini and Dr. T R Padmanabhan: Cryptography and Network Security, Wiley IndiaPvt.Ltd
- 2. Behrouz A.Foruzan, Cryptography and Network Security, Tata Mc GrawHill2007.
- Charlie Kaufman, Radia Perlman, and Mike Speciner, Network Security: PRIVATE Communication in a PUBLIC World, Prentice Hall, ISBN 0-13-046019-2

21ECE32

ADVANCED DIGITAL SIGNAL PROCESSING

L	Т	Р	С
3	0	0	3

Course Objectives

- To learn and understand the concepts of stationary and non-stationary and signals and analysis & characterization of discrete-time random processes
- To enunciate the significance of estimation of power spectral density of random processes
- Tointroducetheprinciples of optimum filters such as Wiener and Kalman filters
- To introduce the principles of adaptive filters and their applications to • communication engineering
- To introduce the concepts of multi-resolution analysis •

Course Outcomes

At the end of the course, the student should be able to:

- 1. Articulate and apply the concepts of special random processes in practical applications
- 2. Choose appropriate spectrum estimation techniques for a given random process
- 3. Apply optimum filters appropriately for a given communication application
- 4. Apply appropriate adaptive algorithm for processing non-stationary signals
- 5. Apply and analyse wavelet transforms for signal and image processing based applications 9

Unit 1-Discrete-Time Random Processes

Random variables-ensemble averages are view.random processes-ensemble averages, autocorrelation and autocovariance matrices, ergodic random process, white noise, filtering random processes, spectral factorization, special types of random processes-AR,MA, ARMA

Unit 2-Spectrum Estimation

consistency, Non-parametric methods-Periodogram, modified-Periodogram-Bias and performance analysis. Bartlett's method, Welch's method, Blackman-Tukey method. Performance comparison. Parametric methods - autoregressive(AR) spectrum estimationauto correlation method, Prony'smethod, solution using Levinson Durbin recursion.

Unit 3-Optimum Filters

Wiener filters - FIR Wiener filter - discrete Wiener Hopf equation, Applications - filtering, linearprediction. IIR Wiener filter - causal and non-causal filters. Recursive estimators discrete Kalmanfilter.

Unit 4-Adaptive Filters

Principles and properties of adaptive filters - FIR adaptive filters. Adaptive algorithms steepestdescent algorithm, the LMS algorithm - convergence. Applications of adaptive filtering - noisecancellation, channel equalization.

Unit 5-Multi Resolution Analysis

Short-time Fourier transform - Heisenberg uncertainty principle.Principles of multiresolution analysis-sub-band coding, the continuous and discrete wavelet transformproperties. Applications of wavelet transform -noise reduction, image compression.

9

9

9

Text Books

- 1. Monson H. Hayes, "Statistical digital signal processing and modeling", John Wiley and Sons Inc. New York, Indian reprint 2008. (UNIT I-IV)
- 2. P. P. Vaidyanathan, "Multirate systems and filter banks", Prentice Hall Inc. 1993 (UNIT V)

- John G. Proakis & DimitrisG.Manolakis, "Digital Signal Processing Principles, Algorithms & Applications", Fourth Edition, Pearson Education / Prentice Hall, 2007.
- 2. Sophoncles J. Orfanidis, "Optimum signal processing", McGraw Hill, 2000

21EC	CE33	FOUNDATION SKILLS IN INTEGRATED PRODUCT	L	Τ	P	С
		DEVELOPMENT	3	0	0	3
Course	e Objec	tives				
•	To und	lerstand the global trends and development methodologi	es o	f vari	ous	
	types o	f products and services				
•	To con	ceptualize, prototype and develop product management p	lan f	or a r	new	
	produc	t based on the type of the new product and development	metl	nodol	ogy	
	integra	ting thehardware, software, controls, electronics and	l me	echan	ical	
	system	S				
٠	To und	erstand requirement engineering and know how to collect	, ana	lyze	and	
	arrive	at requirements for new product development and conv	ert t	he mi	into	
	design	specification				
٠	To und	lerstand system modeling for system, sub-system and th	eir i	nterfa	ices	
	and arr	ive at the optimum system specification and characteristics	5			
•	To dev	velop documentation, test specifications and coordinate	with	ı vari	ous	
	teams	to validate and sustain upto the EoL(EndofLife)support	acti	vities	for	
	engine	ering customer				
Course	e Outco	mes				
	At the	e end of the course,the student should be able to:				
1.	Define	formulate and analyze a problem				
2.	Solve s	pecific problems independently or as part of a team				
3.	Gain k	nowledge of the Innovation & Product Development proc	ess i	n		
	the Bu	siness Context				
4.	Work i	ndependently as well as in teams				
5.	Manag	e a project from start to finish				
TT . •4 1					0	
	-Funda	mentals Of Product Development	Task		У Тта	
Global		s Analysis and Product decision - Social Itends -	Teci	inical ntro di	Tre	nus-
Droduo	t Dovol	enus - Environmental Trends - Fondical/Foncy Trends	I - ducto	nuou and		
Turnes	of Dro	duct Development Querview of Product Developmen		s and	ologi	
Types Droduo	01 FI0 t L if C	uuciDevelopment - Overview of Floudict Development	l III	ethou	ologi	es -
Flouuc	t Life C	ycie – Floduct Development Flamming and Management.				
Unit 2.	Requi	ements And System Design			Q	
Require	ement	Engineering - Types of Requirements - Requireme	nt I	Engin	eerin	σ_
traceab	ility M	atrix and Analysis - Requirement Management - System I	Desig	n & 1	Mode	e eling
- Intro	duction	toSystem Modeling - System Optimization - System S	pecif	icatio	n -	Sub
System	Design	n – Interface Design.				
<i>.</i>						

Unit 3-Design And Testing9Conceptualization-Industrial Design and User Interface Design-Introduction to Concept
generation Techniques–Challenges in Integration of Engineering Disciplines-Concept
Screening & Evaluation - Detailed Design - Component Design and Verification –
Mechanical,Electronics and Software Subsystems - High Level Design/Low Level Design
of S/W Program –Types of Prototypes,S/WTesting-Hardware Schematic,Component
design, Layoutand Hardware Testing – Prototyping - Introduction to Rapid Prototyping and
Rapid Manufacturing –System Integration,Testing,Certificationand Documentation

Unit 4- Sustenance Engineering And End-Of-Life(Eol)Support

Introduction to Product verification processes and stages - Introduction to Product Validation processes and stages - Product Testing Standards and Certification - Product Documentation -Sustenance-Maintenance and Repair–Enhancements-Product EoL-Obsolescence Management–Configuration Management- EoL Disposal

Unit 5- Business Dynamics–Engineering Services Industry

2013

9

The Industry-Engineering Services Industry-Product Development inIndustry versus Academia–The IPD Essentials-Introduction to Vertical Specific Product Development processes-Manufacturing/Purchase andAssemblyofSystems-Integration of Mechanical,Embedded and Software Systems – Product Development Trade-offs -Intellectual PropertyRights and Confidentiality–Security and Configuration Management.

Total Hours: 45

Text Books	
1.	Book specially prepared by NASSCOM as per the MoU.
2.	Karl T Ulrich and Stephen D Eppinger, "Product Design and
	Development", Tata Mc Graw Hill, Fifth Edition, 2011.
3.	John W Newstorm and Keith Davis, "Organizational
	Behavior", Tata McGraw Hill, Eleventh Edition, 2005.
References	
1.	Hiriyappa B, "Corporate Strategy–Managing the Business", Author House, 2013.
2.	Peter F Drucker, "People and Performance", Butterworth – Heinemann
	[Elsevier], Oxford, 2004.
3.	Vinod Kumar Gargand Venkita Krishnan NK, "Enterprise Resource
	Planning – Concepts", Second Edition, PrenticeHall, 2003.
4.	Mark S Sanders and Ernest J McCormick, "Human Factors in
	Engineering and Design", McGrawHill Education, Seventh Edition,

21ECE34	MACHINE LEARNING TECHNIQUES	2		P A	2
Course Objection		3	U	U	3
Jourse Objectiv	es	oblam	olvino		
• To under	the various supervised semi-supervised and unsu	nervise	d learn	ina	
algorithm	in machine learning		u icui ii	шg	
• To learn	the new approaches in machine learning				
 To design 	appropriate machine learning algorithms for pro	blem so	lving		
Course Outcom	es				
At the e	nd of the course, the student should be able to	D :			
1. Different	iate between supervised, unsupervised, semi-supe	rvised			
machine	learning approaches				
2. Apply spe	ecific supervised or unsupervised machine learning	g algor	ithm		
for a part	icular problem				
3. Analyse a	and suggest the appropriate machine learning	oach fo	or the		
various ty	pes of problem				
4. Design ai	nd make modifications to existing machine learning	ng algon	ithms t	to suit a	an
5. individua	l application				
6. Provide u	seful case studies on the advanced machine learn	ing algo	orithms		
Unit 1-Introduc	tion			9	
Candidate Elimin Algorithm –Heur J nit 2- Neural Jeural Network	hations – Inductive bias – Decision Tree learnin Fistic Space Search. Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul	g – Rej tilaver	present 9 Netwo	ation –	-
Candidate Elimin Algorithm – Heur U nit 2- Neural Neural Network Back Propagatio Space Search – G	hations – Inductive bias – Decision Tree learnin Fistic Space Search. Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul n Algorithms – Advanced Topics – Genetic Algo enetic Programming–Models of Evaluationand L	g – Rej tilayer prithms earning	9 Networ – Hyp	ation – rks and othesis	-
Candidate Elimin Algorithm –Heur Unit 2- Neural I Neural Network Back Propagatio Space Search –G Unit 3-Bayesian	hations – Inductive bias – Decision Tree learnin sistic Space Search. Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul n Algorithms – Advanced Topics – Genetic Algorithms enetic Programming–Models of Evaluationand L And Computation All Earning Concert – Learning – Maximum – Likalihood M	g – Rej tilayer prithms earning	9 Networ – Hyp 9	ation – rks and othesis	-
Candidate Elimin Algorithm – Heur Unit 2- Neural Neural Network Back Propagatio Space Search – G Unit 3-Bayesian Bayes Theorem	hations – Inductive bias – Decision Tree learnin ristic Space Search. Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul n Algorithms – Advanced Topics – Genetic Algorithms enetic Programming–Models of Evaluationand Longramming–Models of Evaluationand Longramming–Concept Learning– Maximum Likelihood–M Bayes Optimal Classifier – Gibbs Algorithm	g – Rej tilayer prithms earning inimun	present 9 Networ – Hyp 9 n Desc Naïve	ation – rks and othesis	-
Candidate Elimin Algorithm –Heur Unit 2- Neural I Neural Network Back Propagatio Space Search –G Unit 3-Bayesian Bayes Theorem Length Principle Classifier – Bay	hations – Inductive bias – Decision Tree learnin sistic Space Search. Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul n Algorithms – Advanced Topics – Genetic Algorithms enetic Programming–Models of Evaluationand Lo And Computation All Earning –Concept Learning– Maximum Likelihood–M e – Bayes Optimal Classifier – Gibbs Algority vesian Belief Network – EM Algorithm – Pro-	g – Rej tilayer orithms earning inimun thm –	9 Networ – Hyp 9 n Desc Naïve y Lear	ation – rks and othesis cription Bayes ning –	-
Candidate Elimin Algorithm –Heur Unit 2- Neural Neural Network Back Propagatio Space Search –G Unit 3-Bayesian Bayes Theorem Length Principle Classifier – Bay	hations – Inductive bias – Decision Tree learnin ristic Space Search. Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul n Algorithms – Advanced Topics – Genetic Algorithms enetic Programming–Models of Evaluationand La And Computation All Earning –Concept Learning– Maximum Likelihood–M e – Bayes Optimal Classifier – Gibbs Algority vesian Belief Network – EM Algorithm – Pro- sity – Finite and Infinite Hypothesis Spaces–Mista	g – Rej tilayer prithms earning inimun thm – obabilit	present 9 Networ – Hyp 9 n Desc Naïve y Lear und Mo	ation – rks and othesis ription Bayes ning – del.	-
Candidate Elimin Algorithm –Heur Unit 2- Neural I Neural Network Back Propagatio Space Search –G Unit 3-Bayesian Bayes Theorem Length Principle Classifier – Bay Sample Complex	hations – Inductive bias – Decision Tree learnin sistic Space Search. Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul n Algorithms – Advanced Topics – Genetic Algorithms enetic Programming–Models of Evaluationand Lo And Computation All Earning –Concept Learning– Maximum Likelihood–M e – Bayes Optimal Classifier – Gibbs Algority vesian Belief Network – EM Algorithm – Pro- sity – Finite and Infinite Hypothesis Spaces–Mista	g – Rej tilayer orithms earning inimun thm – obabilit ike Bou	9 Networ – Hyp 9 n Desc Naïve y Lear und Mo	ation – rks and othesis ription Bayes ning – odel.	- 1 3 -
Candidate Elimin Algorithm –Heur Unit 2- Neural Neural Network Back Propagatio Space Search –G Unit 3-Bayesian Bayes Theorem Length Principle Classifier – Bay Sample Complex Unit 4-Instant E	hations – Inductive bias – Decision Tree learnin istic Space Search. Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul n Algorithms – Advanced Topics – Genetic Algorithms enetic Programming–Models of Evaluationand Longration And Computation All Earning –Concept Learning– Maximum Likelihood–M e – Bayes Optimal Classifier – Gibbs Algority vesian Belief Network – EM Algorithm – Pro- tity – Finite and Infinite Hypothesis Spaces–Mista Based Learning	g – Rej tilayer orithms earning inimun thm – obabilit ke Bou	9 Networ – Hyp - n Desc Naïve y Lear ind Mo	ation – rks and othesis raiption Bayes ning – del.	-
Candidate Elimin Algorithm –Heur Unit 2- Neural Neural Network Back Propagatio Space Search –G Unit 3-Bayesian Bayes Theorem Length Principle Classifier – Bay Sample Complex Unit 4-Instant E K-Nearest Neigh - case based lear	hations – Inductive bias – Decision Tree learnin istic Space Search. Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul n Algorithms – Advanced Topics – Genetic Algo- enetic Programming–Models of Evaluationand Lo And Computation All Earning –Concept Learning– Maximum Likelihood–M e – Bayes Optimal Classifier – Gibbs Algori yesian Belief Network – EM Algorithm – Pro- city – Finite and Infinite Hypothesis Spaces–Mista Based Learning bour Learning – Locally weighted Regression – I ning	g – Rej tilayer orithms earning inimun thm – obabilit ke Bou Radial I	9 Networ – Hyp - n Desc Naïve y Lear und Mo 9 pases fr	ation – rks and othesis ription Bayes ning – del. unction	-
Candidate Elimin Algorithm –Heur Unit 2- Neural Neural Network Back Propagatio Space Search –G Unit 3-Bayesian Bayes Theorem Length Principle Classifier – Bay Sample Complex Unit 4-Instant E K-Nearest Neigh - case based lear	 Inductive bias – Decision Tree learnin Tree learnin Tree learnin Tree learnin Tree learnin Tree learnin Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul n Algorithms – Advanced Topics – Genetic Algorithms – Advanced Topics – Genetic Algorited And Computation All Earning Concept Learning – Maximum Likelihood – Me Payes Optimal Classifier – Gibbs Algority Versian Belief Network – EM Algorithm – Protective – Finite and Infinite Hypothesis Spaces–Mista Based Learning – Locally weighted Regression – Ining Ed Learning 	g – Rej tilayer prithms earning inimum thm – obabilit ike Bou Radial I	9 Networ – Hyp - Naïve y Lear and Mo 9 bases fr	ation – rks and othesis othesis ning – del. unction	- [; -
Candidate Elimin Algorithm –Heur Unit 2- Neural Neural Network Back Propagatio Space Search –G Unit 3-Bayesian Bayes Theorem Length Principle Classifier – Bay Sample Complex Unit 4-Instant E K-Nearest Neigh - case based lear Unit 5- Advance Learning Sets o	 Inductive bias – Decision Tree learnin Tree learnin Tree learnin Tree learnin Tree learnin Tree learnin Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul Algorithms – Advanced Topics – Genetic Algorithms Advanced Topics – Genetic Algorithm And Computation All Earning Concept Learning– Maximum Likelihood–Me Bayes Optimal Classifier – Gibbs Algority Algorithm – Protection Belief Network – EM Algorithm – Protective Space Learning bour Learning – Locally weighted Regression – Ining Method Method Algorithm – Learning 	g – Rej tilayer orithms earning inimun thm – obabilit ike Bou Radial I	9 Networ – Hyp - n Desc Naïve y Lear und Mo 9 bases fi ule Set	ation – rks and othesis cription Bayes ning – del. unction	-
Candidate Elimin Algorithm –Heur Unit 2- Neural Neural Network Back Propagatio Space Search –G Unit 3-Bayesian Bayes Theorem Length Principle Classifier – Bay Sample Complex Unit 4-Instant E K-Nearest Neigh - case based lear Unit 5- Advance Learning Sets o Order Rules – Se	 Inductive bias – Decision Tree learnin Tree Space Search. Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul n Algorithms – Advanced Topics – Genetic Algorenetic Programming–Models of Evaluationand Lagorenetic Programming–Models of Programming–Models of Programming–Models of Programming–Models of Programming–Models of Programming–Models of Programming–Induction Programming–Induction Programming–Induction on Inverted I Programming–Induction I Inverted I Programming–Induction I Inverted I Programming–Induction I Inverted I Programmin	g – Rej tilayer orithms earning inimum thm – obabilit ike Bou Radial I Radial I	9 Networ – Hyp - Naïve y Lear and Mo bases fr bases fr gule Set on – In	ation – rks and othesis cription Bayes ning – del. unction – First verting	-
Candidate Elimin Algorithm –Heur Unit 2- Neural Neural Network Back Propagatio Space Search –G Unit 3-Bayesian Bayes Theorem Length Principle Classifier – Bay Sample Complex Unit 4-Instant E K-Nearest Neigh - case based lear Unit 5- Advance Learning Sets o Order Rules – Se Resolution–Anal	 Inductive bias – Decision Tree learnin Tree learnin Tree Space Search. Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul Algorithms – Advanced Topics – Genetic Algorenetic Programming–Models of Evaluationand Lagorenetic Programming–Models of Saged Learning Bour Learning – Locally weighted Regression – Ining Ed Learning f Rules– Sequential Covering Algorithm– Learenets of First Order Rules – Induction on Inverted I ytical Learning–Perfect Domain Theories–Explanation 	g – Rej tilayer orithms earning inimun thm – obabilit tke Bou Radial I Radial I ning Ru Deduction nation I	9 Networ – Hyp • 9 n Desc Naïve y Lear und Mo 9 bases fr 9 bases fr 9 ule Set on – In Base L	ation – rks and othesis cription Bayes ning – del. unction – First verting earning	-
Candidate Elimin Algorithm –Heur Unit 2- Neural Neural Network Back Propagatio Space Search –G Unit 3-Bayesian Bayes Theorem Length Principle Classifier – Bay Sample Complex Unit 4-Instant E K-Nearest Neigh - case based lear Unit 5- Advance Learning Sets o Order Rules – Se Resolution–Anal -FOCL Algorith	hations – Inductive bias – Decision Tree learnin istic Space Search. Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul n Algorithms – Advanced Topics – Genetic Algo- enetic Programming–Models of Evaluationand Lago- enetic Programming–Models of Evaluationand Lago- and Computation All Earning –Concept Learning– Maximum Likelihood–Mage- Bayes Optimal Classifier – Gibbs Algori- yesian Belief Network – EM Algorithm – Pro- tity – Finite and Infinite Hypothesis Spaces–Mista Based Learning bour Learning – Locally weighted Regression – Ining ed Learning f Rules– Sequential Covering Algorithm– Lear- ets of First Order Rules – Induction on Inverted I ytical Learning–Perfect Domain Theories–Explan- m–Reinforcement Learning–Task–Q-Learning–	g – Rej tilayer orithms earning inimum thm – obabilit ike Bou Radial I Radial I nation I Fempor	9 Networ – Hyp - n Desc Naïve y Lear ind Mo 9 bases fi ule Set on – In Base La cal Dif	ation – rks and othesis cription Bayes ning – del. unction – First verting earning ference	
Candidate Elimin Algorithm –Heur Unit 2- Neural Neural Network Back Propagatio Space Search –G Unit 3-Bayesian Bayes Theorem Length Principle Classifier – Bay Sample Complex Unit 4-Instant E K-Nearest Neigh - case based lear Unit 5- Advance Learning Sets o Order Rules – Se Resolution–Anal -FOCL Algorith Learning	hations – Inductive bias – Decision Tree learnin ristic Space Search. Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul n Algorithms – Advanced Topics – Genetic Algo- enetic Programming–Models of Evaluationand La And Computation All Earning –Concept Learning– Maximum Likelihood–Me e – Bayes Optimal Classifier – Gibbs Algori- yesian Belief Network – EM Algorithm – Pro- rity – Finite and Infinite Hypothesis Spaces–Mista Bour Learning – Locally weighted Regression – I ning ed Learning f Rules– Sequential Covering Algorithm– Lear ets of First Order Rules – Induction on Inverted I ytical Learning–Perfect Domain Theories–Explan- m–Reinforcement Learning–Task–Q-Learning–	g – Rej tilayer prithms earning inimum thm – obabilit oke Bou Radial I Radial I ning Ru Deduction nation I Fempor	9 Networ – Hyp - Naïve y Lear and Mo 9 bases fr ule Set on – In Base La cal Dif	ation – rks and othesis othesis ning – odel. unction – First verting earning ference	
Candidate Elimin Algorithm –Heur Unit 2- Neural Veural Network Back Propagatio Space Search –G Unit 3-Bayesian Bayes Theorem Length Principle Classifier – Bay Sample Complex Jnit 4-Instant E C-Nearest Neigh - case based lear Jnit 5- Advance Learning Sets o Order Rules – Se Resolution–Anal FOCL Algorith Learning	hations – Inductive bias – Decision Tree learnin ristic Space Search. Networks And Genetic Algorithms Representation – Problems – Perceptrons – Mul n Algorithms – Advanced Topics – Genetic Algo- enetic Programming–Models of Evaluationand La And Computation All Earning –Concept Learning– Maximum Likelihood–Me e – Bayes Optimal Classifier – Gibbs Algority resian Belief Network – EM Algorithm – Pro- rity – Finite and Infinite Hypothesis Spaces–Mista Based Learning bour Learning – Locally weighted Regression – Ining ed Learning f Rules– Sequential Covering Algorithm– Lear ets of First Order Rules – Induction on Inverted I ytical Learning–Perfect Domain Theories–Explan- im–Reinforcement Learning–Task–Q-Learning–	g – Rej tilayer orithms earning inimun thm – obabilit tke Bou Radial I Radial I ning Ru Deduction nation I Fempor	9 Networ – Hyp – Hyp – Desc Naïve y Lear und Mo 9 bases fi ule Set on – In Base La cal Dif	ation – rks and othesis cription Bayes ning – del. unction – First verting earning ference	

Text Books

1. Tom M.Mitchell, "Machine Learning", McGraw-Hill Education (India) Private Limited, 2013.

- 1. Ethem Alpaydin, "Introduction to Machine Learning (Adaptive computation and Machine Learning)", The MIT Press 2004.
- 2. Stephen Marsland, "MachineLearning: An Algorithmic Perspective", CRC Press, 2009
| 21ECE35 | VIDEO ANALYTICS | L | T | Р | C |
|---|--|------------------------------|--------------------------------|-------------------------|-------------------|
| Course Objection | | 3 | 0 | 0 | 3 |
| Course Objectiv | es | | | | |
| To unders To unders | tand the basic configuration of video analytics | | | | |
| To unders To unders | tand the functional blocks of a video analytic syst | em | | | |
| To unders To get exit | posed to the various applications of video analytic syst | s s | | | |
| Course Outcome | s | .5 | | | |
| At the en | nd of the course, the student should be able to: | | | | |
| 1. Design vic | leo analytic algorithms for security applications | | | | |
| 2. Design vic | leo analytic algorithms for business intelligence | | | | |
| 3. Design cu | stom made video analytics system for the given ta | arget a | pplicat | ion | |
| Unit 1-Video An
Need for Video
extraction-classif
SIFT features. | alytic Components
Analytics-Overview of video Analytics- Foreg
ier-Preprocessing-edge detection-smoothening-I | ground
Feature | extrac
e spac | 9
ction- 1
ce-PCA | Feature |
| Unit 2-Foregrou
Background est
Segmentation-Re
Tracking in a mu | nd Extraction
imation-Averaging-Gaussian Mixture Model-
gion growing-Region splitting-Morphological o
Itiple camera environment. | Optical
peratio | Flov
Flov | 9
vbased
sion-D | -Image
ilation |
| Unit 3-Classifier
Neural networks
classifier-HMM | s
(back propagation)-Deep learning networks-l
based classifier. | Fuzzy | 9
Classi | ifier-Ba | ayesia |
| Unit 4-Video An
Abandoned objec
Perimeter security | alytics For Security
t detection-human behavior alanalysis-human act
y-crowd analysis and prediction of crowd congest | ion rec
ion. | ognitic | 9
on- | |
| Unit 5-Video Ar | nalytics For Business Intelligence & Traffic Mo | nitori | ng An
9 | d Assis | tance |
| Customer behav
congestion identit | ior analysis-people counting-Traffic rule vie
fication for route planning-driver assistance-lane | olation
change | de
warni | tection
ng. | -traffi |
| | Total | Hours | s: 45 | | |
| Text Books | | | | | |
| 1. Graeme A
(Editor) V
Processing | A. Jones (Editor), Nikos Paragios (Editor), Ca
ideo-Based Surveillance Systems: Computer Visi
g,Kluwer academic publisher,2001. | arlo S.
on and | Rega
Distri | zzoni
buted | |
| References | | | | | |
| 1. Nilanjan
(Editor),A
(IGIgloba | Dey(Editor), Amira Ashour (Editor) and
applied Video Processing in Surveillance and M
l) 2016. | Suvoji
onitori | t Aching Sys | narjee
stems | |
| 2. Zhihao Cl
(Author),
Video An
Independe | nen (Author), YeYang (Author), Jing yu Xue (A
FengGuo (Author), The Next Generation of Vide
alytics: The Unified Intelligent Video Analytics S
ent Publishing Platform 2014 | Author
o Surv
Suite, C |), Lipi
eillanc
Create S | ngYe
e and
Space | |
| 3. Caifeng S
Gong (Ec | han (Editor), Fatih Porikli (Editor), TaoXiang (
litor) Video Analytics for Business Intelligence, S | Editor)
pringe |), Shao
r,2012 | ogang | |

21ECE36	DIGITAL IMAGE PROCESSING	L	Т	Р	С
		3	0	0	3
Course Objectiv					
• To becom	e familiar with digital image fundamentals	a	1.5	,	
• To get exp	bosed to simple image enhancement techniques in	Spatial	and F	requen	ncy
domain.					
• To learn c	oncepts of degradation function and restoration tec	chniqu	es.		
• To study t	he image segmentation and representation technic	lues.			
To becom	e familiar with image compression and recognition	n meth	ods		
Course Outcome	25				
At the e	nd of the course, the student should be able to:				
1. Know and	understand the basics and fundamentals of digital	ımage	proce	essing,s	such as
digitizatio	n,sampling,quantization,and 2D-transforms.		1 1		
2. Operateon	images using the techniques of smoothing, sharper	ning ar	id enha	anceme	ent.
3. Understan	the restoration concepts and filtering techniques.			1	•,•
4. Learn the	basics of segmentation, features extraction, con	npressi	on and	a recog	gnition
	or color models.			0	
Child I-Digital In	lage Fundamentals	f Via	1 T	y Domocrat	ion
Steps InDigital	Inageriocessing – Components – Elements of	$\mathbf{v} = \mathbf{v} \mathbf{v}$	lationa	bing b	- 1011 –
nivels. Color in	a Acquisition – image Sampling and Quantization	I – Ke	ional	mothor	motion
preliminaries 2D	transforms DET DCT	minens	Ionai	mather	natica
premimaries, 2D					
Unit 2 Imaga En	honcomont			0	
Spatial Domain:	Grav level transformations Histogram process	sing	Baci	es of	Snatia
Filtering Smooth	ing and Sharpening Spatial Filtering, Frequency	n Dom	- Dasi	troduct	sparia
FourierTransform	\vdash Smoothing and Sharpening frequency domain	filter	s_Idea	l Butte	rwortl
and Gaussian filte	ers Homomorphic filtering Color image enhancement	ent	5-1000	i,Duite	woru
und Guussian ma	no, no monorphie meeting, color mage emaneem	C 111 .			
Unit 3-Image Re	storation			9	
Image Restoratio	n-degradation model. Properties. Noise models–Me	an Filt	ers–O	der St	atistic
 Adaptive filters 	– Band reject Filters – Band pass Filters – Notch	Filter	s – Op	timum	Notcl
Filtering–Inverse	Filtering–Wiener filtering.		- r		
6	6				
Unit 4-Image Se	gmentation			9	
Edge detection,	Edge linking via Hough transform – Thresl	holding	g - R	legion	based
segmentation -Re	egion growing – Region splitting and merging – N	Aorpho	ologica	l proce	essing
erosion and dilat	ion,Segmentation by morphological watersheds	– basi	c con	cepts -	– Dan
construction – Wa	ater shed segmentation algorithm.			•	
Unit 5-Image Co	mpression And Recognition				9
Need for data con	npression, Huffman, Run Length Encoding, Shift	codes,	Arith	metic c	coding
JPEG standard, N	APEG. Boundary representation, Boundary descri	ption,	Fourie	er Desc	criptor
RegionalDescript	ors – Topological feature, Texture - Pattern	s and	Patte	rn cla	sses
Recognition base	d on matching.				
	То	tal Ho	urs: 4	5	
T					
Text Books					
1. Rafael C. Third Edit	Gonzalez,Richard E.Woods, 'Digital Image Procion, 2010.	essing	', Pea	rson,	
2. AnilK Iair	, 'Fundamentals of Digital Image Processing' Pear	son.20	02		

- 1. Kenneth R.Castleman, 'Digital Image Processing', Pearson, 2006.
- 2. RafaelC.Gonzalez,Richard E. Woods, Steven Eddins, 'Digital Image Processing using MATLAB',Pearson Education,Inc.,2011.
- 3. D,E.Dudgeon and RM.Mersereau , 'Multidimensional Digital Signal Processing ', Prentice Hall Professional Technical Reference, 1990.
- 4. William K.Pratt, 'Digital Image Processing', JohnWiley, NewYork, 2002
- 5. Milan Sonka et al 'Image processing, analysis and machine vision', Brookes/Cole, Vikas Publishing House

21ECE37	ADHOC AND WIRELESS SENSOR	L	Т	P	С
	NETWORKS	3	0	0	3
Course Objective The student shoul • Learn Adho • Understand • Have an in- • Understand Sensor netw • Have an ex Course Outcomes At the end 1. Know the b 2. Apply this network an 3. Apply the b 4. Understand	d be made to: oc network and Sensor Network fundamentals the different routing protocols depth knowledge on sensor network architecture the transport layer and security issues possib vorks posure to mote programming platforms and tools of the course, the student would be able to: basics of Adhoc networks and Wireless Sensor Networks knowledge to identify the suitable routing algorithd d user requirement cnowledge to identify appropriate physical and M the transport layer and security issues possible in	and de le in etwork hm bas	esign is Adhoc s sed on t yer prot oc and	sues and he ocols	
5. Be familiar	vorks. with the OS used inWireless Sensor Networks ar	nd buil	ld basic	modu	les.
Elements of Adho commercial applic Designing a Rout Routing Protocols, Vector (DSDV), C Routing (AODV). Unit 2- Sensornet Challenges for V Sensor Networks, Components,Energy Network Scenari	c Wireless Networks, Issues in Adhoc wireless re- ations of Adhoc networking, Adhoc wireless ing Protocol for Ad Hoc Wireless Networks, Table Driven Routing Protocols - Destination Se Dn–DemandRoutingprotocols–AdhocOn–Demand works–Introduction & Architectures Vireless Sensor Networks, Enabling Technolog WSN application examples, Single-Node Architectures y Consumption of Sensor Nodes, Network Arch os, Transceiver DesignConsiderations, Optimization	networ Intern Classif quence I Dista ies for ecture hitectur	ks,Exar et,Issue fication ed Dista ance Ve or Wire - Hardv re - Se Goals	nple s in s of ance ector 9 eless ware nsor and	
Higures of Merit. Unit 3 – WSN Net MAC Protocols for Concepts - S-MA PAMAS,Schedule Energy Efficient R Unit 4 – Sensor N Network Security NetworkSecurityA solutions for jan Distribution and	working Concepts And protocols for Wireless Sensor Networks,Low Duty Cycle AC, The Mediation Device Protocol, Conten- based protocols–LEACH,IEEE 802.15.4 MACpr outing,Challenges and IssuesinTransportlayerpro etwork Security Requirements, Issues and Challenges in Securitacks,Layer wise attacks in wireless sensor nming, tampering, black hole attack, flood Management,Secure Routing–SPINS,reliability	e Proto ntion rotocol tocol rity Pr netwo ing a requi	ocols A based l,Routin 9 rovisior rks,poss ttack. rements	9 and W protoc g Proto sible Key s in	akeu ols ocols
Unit 5-Sensor Net	work Platforms And Tools		9		
Sensor Node Har softwareplatforms ts extension tosen nodes – State centr	dware – Berkeley Motes, Programming Challe – TinyOS, nesC, CONTIKIOS, Node-level Simu sor networks, COOJA, TOSSIM, Programming t icprogramming.	enges, ulators beyond	Node-l – NS2 l indivi	evel and dual	
			Tota	al Hou	rs: 4

Text Books

- 1. C.Siva Ram Murthyan dB. S. Manoj, "AdHoc Wireless Networks Architectures and Protocols", PrenticeHall, PTR, 2004. (UNIT I)
- 2. Holger Karl, Andreas willig," Protocol and Architecture for Wireless Sensor Networks ",John wiley publication,Jan 2006.(UNITII-V)

- 1. Feng Zhao , Leonidas Guibas," Wireless Sensor Networks :an information processing approach",Elsevier publication,2004.
- 2. Charles E.Perkins, "AdHoc Networking", Addison Wesley, 2000.
- 3. I.F.Akyildiz, W.Su, Sankara subramaniam, E. Cayirci, "Wireless sensor networks: a survey", computer networks, Elsevier, 2002, 394-422.

21ECE38	MEMS AND NEMS		T o	P	<u>C</u>
Course Objective	25	3	U	U	3
To introdu	the concepts of micro and nano electromechanic	cal dev	vices		
 To know t 	he fabrication process of Microsystems				
• To know t	he design concepts of micro sensors and micro actu	lators			
• To introdu	ce the concepts of quantum mechanics and nano sy	ystems			
Course Outcome On success 1. Interpret t application 2. Recognize processes 3. Analyze including 4. Comprehe systems.	s ul completion of this course, the student should he basics of micro/nano electromechanical syste is and advantages the use of materials in microfabrication and desc including surface micromachining, bulk micromach the key performance aspects of electromech sensors and actuators nd the theoretical foundations of quantum me	be ablems in wribe the manical chanic	le to: acluding the fabr: and LIC trans cs and	g their ication GA. ducers Nano	
Introduction to Demechanical System Materials for MEI Unit 2 – MEMS Photolithography, techniques, Micro	esign of MEMS and NEMS, Overview of Nano and ns, Applications of Micro and Nano electromechan MS and NEMS: Silicon, siliconcompounds, polymers Fabrication Technologies Ion Implantation, Diffusion, Oxidation, CY machining: Bulk Micromachining, Surface Microm	Micro nical sy ,metal VD, S achinin	oelectro ystems, s. Sputteri ng, LIC	9 Ing Et GA.	ching
Unit 3 – Micro Se MEMS Sensors: Pressure sensors,0	nsors Design of Acoustic wave sensors, Vibratory gyr Case study:Piezoelectric energy harvester.	oscop	e, Cap	9 acitive	
Unit 1 Miaro A	atuators				0
Design of Actuat Alloys, Actuation Study: RF Switch.	ors: Actuation using thermal forces, Actuation us using piezoelectric crystals, Actuation Using Elec	sing sl trostat	nape m icforce	emory s,Case	,
Unit 5-Nano Dev	ices				9
Atomia Structure	a and Quantum Machanica, Shradingar Equation	n 7n	O non	o roda	-
hased NFMS dev	s and Quantum Mechanics, Shrounger Equation	II, ZII	O nan	0 1005	
			Tota	l Hom	rs• 45
Text Books			1000	ii iiou	
1 Mana Mad	ou "Eundemontale of Miero fabrication" CPC and	a1007			
2. Stephen D	Senturia,"Micro system Design",Kluwer Academi	ic Publ	lishers,	2001.	
References			,		
 Tai Ra Hill, 20 Chang 	n Hsu,"MEMS andMicro systems Design and Mar 002. Liu,"Foundations of MEMS",Pearson education Ir	nufacto ndia lir	ure", T	ata Mc 006,	raw
3. Sergey Structu	Edward Lyshevski," MEMS and NEMS: Systems res"CRC Press,2002.	,Devic	es,and		

21ECE39	PHOTONIC NETWORKS	L	Т	Р	С
2112(115)		3	0	0	3
Course Obje	etives				
• To en	able the student to understand the importance of	the	back	oone	
infrast	ructure for our present and future communication needs	and f	familia	arize	
them w	with the architectures and the protocol stack in use.				
• To ena	ble the student to understand the differences in the desig	n of	data p	lane	
and th	e control plane and therouting, switching and there so	urce	alloca	ation	
metho	ds and the network management and protection methods	in vo	gue.		
Course Outco	omes				
At the	e end of the course, the student would be able to:				
1. Use th	e backbone infrastructure for our present and future com	muni	catior	n nee	ds
2. Analyz	ze the architectures and the protocol stack				
3. Compa	are the differences in the design of data	pla	ne,co	ntrol	
plane,	outing,switching,resource allocation methods,network	k ma	inagei	nent	
and pr	otection methods in vogue.				
Unit 1-Optica	al System Components			9	
LightPropagat	ioninoptical fibers-Loss & bandwidth,System	limit	ations	, N	Jonlinear
effects;Solitor	as;Optical Network Components-Couplers,Isolators &	Circu	lators	,Mul	tiplexers
&Filters,Optic	al Amplifiers, Switches, Wavelength Converters.				
Unit 2-Optica	al Network Architectures			9	
Introduction (o Optical Networks; SONET / SDH, Metropolitan-A	rea	Netwo	orks,	Layered
Architecture;	Broadcast and Select Networks – Topologies for Broa	dcast	Netw	/orks	, Media-
Access Contro	ol Protocols, Wavelength Routing Architecture.				
Unit 3-Wave	ength Routing Networks	_	. 9		
The optical l	ayer, Optical Network Nodes, Routing and wavelen	gth a	issign	ment	, Traffic
Grooming in (Optical Networks, Architectural variations-Linear Light v	vave	netwo	orks,I	Logically
Routed Netwo	orks.			•	
Unit 4-Packe	t Switching And Access Networks		D	9	
Photonic I	Packet Switching– OTDM, Multiplexing	and	De	mult	iplexing,
Synchronizati	on,Broadcast OIDM networks,Switch-based networks	s,Cor	itentio	n Re	esolution
Access Netwo	orks–Network Architecture overview,Optical Access Ne	twor	k Arcl	ntect	ures and
OTDM netwo	rks.		0		
Unit 5-Netwo	ork Design And Management		9	4	
Transmission	System Engineering – System model, Power	pena	Ity -	tra	nsmitter,
receiver,Optic	al amplifiers, crosstalk, dispersion, wavelength stabi	lizati	on,Ov	ver a	II design
considerations	S, Control and Management – Network management 1		lons, (Iguration
management,	Performance management, Fault management, Optical sa	Tot	bervic		45
Text Rooks		10	ai 110	u13.	J
1 Raiiv	Ramaswami and Kumar N. Sivaraian "Ontical Netwo	rke	A Pro	ctice	1
I. Kajiv Perene	ctive" Harcourt Asia Pte I td. SecondEdition 2004	11.3.	1 1 1 a	cuca	L
2 C Six	a Ram Moorthy and Mohan Gurusamy "WDM On	tical	Netw	orks	•
2. C. Sh	nt Design and Algorithms" Prentice Hall of India Ist Ed	ition	2002	0110	•
References	by Design and Engernmins, i renewe than of india, ist Eu		2002.		
1 PFG	een Ir "Fiber Ontic Networks" Prentice Hall NI 1003				
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	nath Mukheriee "Ontical WDM Networks" Springer Sev	ries 7	006		
2. D15wd	and marine jee, option white retworks springer be	103,2			

21ECE40	ELECTROMAGNETIC INTERFERENCE	L	Τ	P	C
~~~~~	AND COMPATIBILITY	3	0	0	3
Course Objecti	ves and ha mada tai				
The student she	build be made to:				
<ul> <li>To muot</li> <li>To teach</li> </ul>	the importance of Electromagnetic Compatible designed	ons			
<ul> <li>To expla</li> </ul>	in the existing standards for Electromagnetic Compa	tibility	,		
ro enplu		,ere ine j			
<b>Course Outcon</b>	nes				
At the e	and of the course, the student would be able to:				
1. Identify	the various types and mechanisms of Electromagnet	ic Inter	rferenc	e.	
2. Propose	a suitable EMI mitigation technique.				
<b>3.</b> Describe	the various EMC Standards and methods to measur	e them	l <b>.</b>		
Unit 1-Introdu	ction		9		
EMI-EMC defin	itions; Sources and Victims of EMI; Conducted and	l Radia	ted EN	/II Em	ission
Lectro Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Longue. Long	ty;Case Histories;Radiation Hazards to humans.				
	upling Principles			9	
Conducted, radi	ated and transient coupling; Common ground imped	lance c	ouplin	g; Coi	nmor
mode and grou	nd loop coupling; Differential mode coupling; N	ear fie	eld cab	ole to	cable
coupling; Field	to cable coupling;Power mains and Power su	pply	couplir	ıg;Tra	nsient
EMI,ESD.					
Unit 3-EMI Co	ntrol		9		
Shielding; EMI	filters; grounding; bonding; Isolation transformers; ti	ransien	t		
Suppressors; E	MI suppression cables.			0	
Unit 4- EMC D	esign For Circuits And PCBs	4 - 11- 1.	4		
and cross talk or	ays and Switches, Nonlinearities in Circuits; Cross	talk ll	i iransi nedenc	IIISSIO	ii iine
Powerdistributic	andecoupling. Zoning Grounding, VIAs Terminations	ace IIII	penanc	с, ко	uting,
Unit 5- EMI M	easurements And Standards	•		9	
Open area test s	ite: TEM cell: EMI test shielded chamber and shield	led fer	rite lin	ed ane	choic
chamber:Line i	mpedance stabilization networks:EMI Rx and snow	ectrum	analv	zer:Ci	viliar
standards -CISP	R,FCC,IEC,EN;Military standards-MIL461E/462.			,,,,,	
	· · · · · ·		Tota	l Hou	rs: 45
Text Books					
1. V.P.I	Kodali, "Engineering EMC Principles, Measurements	and			
Tech	nologies",IEEE Press,Newyork,1996.(UnitI–V)				
2. Henr	y W.Ott., Noise Reduction Techniques in Electronic S	System	ıs",Aw	iley	
Inter	Science Publications, John Wiley and Sons, Newyorl	, 1988	.(Unit-	IV)	
References					
1. C.R.I	Paul,"Introduction to Electromagnetic Compatibility'	',John	Wiley	and	
Sons	,Inc, 1992.	•1•. ••	<b>a</b> rd		
2. Beml	hard Keiser, "Principles of Electromagnetic Compatib	o111ty",	5"		
Ed,A	riechnouse, Norwood, 1986. D. I. White Consultant Incomparets "Iland healt of EN		<b>~"" (</b> /~1	I V 10	00
3. Don	K.J. while Consultant Incorporate, Hand book of EN	$\Pi/EWI$	,vol	I-V,19	00.

21ECE41	MIXED SIGNAL IC	L	Т	P	C
Course Objectives	DESIGN	3	0	0	3
<ul> <li>The student should b</li> <li>Study the mixe</li> <li>Understand the</li> <li>Learn the datac</li> <li>Study the integ</li> </ul>	e madeto: d signal of submicron CMC various integrated based fi converters architecture, mod rated circuit of oscillators a	DS circuits. lters and to leling and s and PLLs.	pologies. signal to 1	noise ratio.	
study the integ	fued encur of openfutors t	ind I LL5.			
Course Outcomes At the end of 1. Apply the conc 2. Analyze the ch 3. Design of vario 4. Analyze the sig 5. Design of oscil	the course, the student wo epts for mixed signal MOS aracteristics of IC based CM ous data converter architecto gnal to noise ratio and mode lators and phase lock loop	uld be able circuit. MOS filters ure circuits eling of mix circuit.	e <b>to:</b>	ls.	
Unit 1-Sub Microne	Mos Circuit Design				9
Submicron CMOS: Resistors.Digital circu Circuit Design:Biasing	Overview and Models, hit design:The MOSFET g,Op-Amp Design,Circuit N	CMOS Switch,De loise.	process elay Eler	flow, Capao nents,An Ado	citors and der.Analog
Integrator Building Bl gm-C integrators, Dia function, The Biquadra <b>Unit 3-Data Converte</b> DAC Architectures- R DACs, Cyclic DAC,	ocks- low pass filter, Acti screte time integrators. F tic transfer function,Filters er Architectures esistor string, R-2R ladder and Pipeline DAC. AD	ve RC inte iltering To usingNoise Networks, PC Archite	grators, 1 pologies: shaping Current S ectures-	MOSFET-C 1 The Biline Steering, Char Flash, Two-	Integrators ar transfer 9 rge Scaling step flasl
ADC,Pipeline ADC,I Voltage controlled osc Delay locked Loops	ntegrating ADC's,Success cillators, simple PLL, charg	ive Approx ge pumps H	ximation PLLs, No	ADC. LC ( n ideal effect	Oscillators s in PLLs
Unit 4-Data Converte Sampling and Aliasin Quantization noise. I usingAveraging, Decin High passs in c filters-	er Modeling And SNR g: A modeling approach, Data converter SNR: An mating filter for ADCs, In Using feedback to improve	Impulse sa overview, terpolating SNR.	ampling, Clock filter for	The sample Jitter, Impro r DACs, Ban	<b>9</b> and Hold ving SNF d pass and
Unit 5-Oscillators An LC oscillators, Voltag effects in PLLs, Delay	<b>d PLL</b> e controlled oscillators, si Locked Loops.	mple PLL,	charge [	9 pumps PLLs, Total	Non idea <b>Hours: 4</b>
Text Books					
1. CMOS Mixed Press. reprint 2	Signal Circuit Design by R. 008.	Jacob Bak	er, Wiley	India, IEEE	
References					
<ol> <li>CMOS Circuit India,IEEE Pre</li> <li>Design of A McGrawHill,33</li> </ol>	t Design, Layout and Sin ss,Second Edition,reprint 2 Analog CMOS Integrate 3 rd Re-print,2016.	mulation b 009. d Circuits	y R.Jaco by B	ob Baker,Wil	ley .vi,

21ECE42	DSP ARCHITECTURE AND	L	Т	P	C
411/CL/74	PROGRAMMING	3	0	0	3
Course Objective	S Id ha mada tar				
The student shou	la be made to:				
Basics on I	Digital Signal Processors				
Programma	able DSP's Architecture, On-chip Perip	herals and In	struction	set	
Programmi	ing for signal processing applications				
Advanced	Programmable DSP Processors.				
Course Outcomes					
At the end	I of the course, the student would be a	able to:			
1. Allalyze II 2. Demonstra	te their ability to program the DS	P processor	for sig	nal nro	cessin
2. Demonstra	is then ability to program the DS	i processor	ioi sig	nai più	CESSIII
<b>3.</b> Discuss co	mpare and select the suitable Advance	d DSP Proce	ssors for	real-tin	ne
signal proc	essing applications		55015 101	iour till	10
Unit 1-Fundamor	tals Of Programmable Dens			0	
Introduction to P	roorammable DSPs Architectural Fe	eatures of P	DSPs -	ד Multioli	er and
Multiplieraccumul	ator – Modified Bus Structures and	Memory ac	cess = N	Aultinle	acces
memory – Multi-r	ort memory_VI IW architecture- Pipe	lining_Speci	al Addre	ssing m	odes i
P-DSPs –On chip	Peripherals, Applications of Programma	able DSPs.	ur maare	ssing in	
Unit 2-TMS320C	5X Processor			9	
Architecture of C	5X Processor – Addressing modes –	- Assembly	language	Instruc	tions
Pipelinestructure.	On-chip Peripherals – Block Diagram	of DSP starte	er kit (DS	SK) - Science SK	oftwar
Tools. DSKon-boa	ard peripherals. Application Programs for	or processing	real time	e signals	
Unit 3-TMS320C	6X Processor	1 8		9	
Architecture of t	he C6x Processor - Instruction Set	– Address	ing mod	es, Ass	emble
directives, On-ch	ip peripherals, DSP Development	System: DS	P Starte	r Kit -	Cod
Composer Studio	- Support Files - Introduction to	AIC23 code	ec and o	other of	n-boar
peripherals, Real-7	Fime Programming Examples for Sign	als and Nois	se genera	tion,Fre	quenc
analysis,Filter desi	ign.				
<b>Unit 4-ADSP Pro</b>	cessors			9	
Architecture of AI	DSP-21XX and ADSP-210XX series of	f DSP proces	sors- Ade	dressing	mode
and assembly langu	age instructions-Application programs	s–Filter desig	gn,FFT ca	alculatio	n.
Unit 5-Advanced	Processors			9	
Study of TI's ad	vanced processors - TMS320C674x	and TMS32	0C55x I	DSPs, A	ADSP'
Blackf in and S	igma DSP Processors, NXP's DSP5	56Fxx Famil	y of DS	SP Proc	cessors
Comparison of the	features of TI,ADSP and NXPDSP fa	milyprocesso	ors.	TT	4 -
			lotal	Hours:	45
Text Books					
1. B. Venkat	aramani and M. Bhaskar, "Digital	Signal Proc	essors -	- Archi	tecture
Programmi	ing and Applications"–Tata McGraw-	-Hill Publish	ing Con	npany L	imited
New Delhi	,2003.		8	-r j	
References	<u>,</u>				
1 Avter S	Singh and S. Sriniyasan Digital Signal	Processing	_ Implem	entatio	าร
1. Avial a	P Microprocessors with Examples f	rom TMS37	-111ptell 0C54vv	Cenga	15 16
Learnin	ig India Private I imited Delhi 2012	10111 1141032	ос <i>этл</i> л,	Congag	
2 Rulnh	Chassaing and Donald Reav Di	oital Sional	Process	sing ar	hd
Annlies	ations with the C6713 and C6416	DSK John	Wiley	& Son	s
In a Deal	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	- 011, 50illi	,, ney	~ 501	,

Inc.,Publication,2012(Reprint).3. User guides Texas Instruments,Analog Devices and NXP.

## **PROFESSIONAL ELECTIVE V**

21ECE43	<b>COMPRESSIVE SENSING</b>		T 0	P 0	$\frac{C}{3}$
<ul> <li>Course Objectives</li> <li>The student should</li> <li>To present the sparse ornea</li> <li>To expose service of signality</li> <li>To give stude compressive</li> </ul>	<b>I be made to:</b> ne basic theory and ideas showing when it is rly sparse signals from undersampled data tudents to recent ideas in modern convex o recovery dents a sense of real time applications that sensing ideas	possible ptimizat might b	to reco ion allo penefit	onstruct owing from	
Course Outcomes At the end 1. Appreciate t 2. Design a new areas in wire	of the course, the student would be able to: he motivation and the necessity for compress v algorithm or modify an existing algorithm eless sensor network.	ed sensi for diffe	ng tech rent ap	nology. plication	n
Unit 1-Introduction Introduction; Motiv Compression; Conv Compressed Sensing	<b>n To Compressed Sensing</b> vation; Mathematical Background; Traditi ventional Data Acquisition System; Drawl g (CS).	ional Sa backs o	mpling f Tran	g; Trad sform c	9 litional coding;
Unit 2-Sparsity An Signal Representat Coherence; Stable re	<b>d Signal Recovery</b> ion; Basis vectors; Sensing matrices; Re ecovery; Number of measurements.	stricted	Isome	g tric Pro	) operty;
Unit 3-Recovery A Basis Pursuit algo Pursuit(OMP), Stag (CoSaMP); Iterativo based : Model based	<b>Igorithms</b> Drithm: L1 minimization; Matching pur ewise OMP, Regularized OMP, Compressiv e Thresholding algorithm: Hard thresholdin l CoSaMP, Model based HIT.	rsuit: C e Sampl 1g, Soft	orthogo ing Ma thresh	nal Ma atching I olding;	) utching Pursuit Model
Unit 4-Compressiv Basics of WSN; V Compressive Sensi Projections in WSN	e Sensing For WSN Wireless Sensor without Compressive Ser ng; Compressive Wireless Sensing: Spar s, Compressed Sensing in WSNs.	nsing; V tial con	Vireless	s Sensor on in V	9 r with WSNs,
Unit 5-Application Compressed Sensin Nodes; Compressiv for Image Fusion; S	s Of Compressive Sensing g for Real-Time Energy-Efficient Compress e sensing in video surveillance; An Applica ingle-Pixel Imaging via Compressive Sampl	ion on V tion of ( ing.	Vireles Compre To	s Body S essive S otal Hou	) Sensor ensing Irs: 45
Text Books					
<ol> <li>Radha S, He Communicat (UNIT I-V)</li> <li>Mark A. Da "Introduction Applications</li> </ol>	emalatha R, Aasha Nandhini S, "Compressiv tion: Challenges and Opportunities", Riv avenport, Marco F. Duarte, Yonina C. Eld n to Compressed Sensing," in Compressed , Y. Eldar and G. Kutyniok, eds., Cambridge	ve Sensi ver pub ar and ( d Sensir e Univer	ng for dication Gitta K ng: The sity Pre	Wireles n, 2016 Kutyniok eory and ess, 201	s 5. d 1

(UNIT I)

- Duarte, M.F.; Davenport, M.A.; Takhar, D.; Laska, J.N.; Ting Sun; Kelly, K.F.; Baraniuk, R.G.; , "Single-Pixel Imaging via Compressive Sampling," Signal Processing Magazine, IEEE, vol.25, no.2, pp.83-91, March 2008.
- Tao Wan.; Zengchang Qin.; , "An application of compressive sensing for image fusion", CIVR'10 Proceedings of the ACM International Conference on Image and Video Retrieval, Pages 3-9.
- H. Mamaghanian , N. Khaled , D. Atienza and P. Vandergheynst "Compressed sensing for real-time energy-efficient ecg compression on wireless body sensor nodes", IEEE Trans. Biomed. Eng., vol. 58, no. 9, pp.2456 -2466 2011.
- Mohammadreza Balouchestani.; Kaamran Raahemifar.; and Sridhar Krishnan.;, "COMPRESSED SENSING IN WIRELESS SENSOR NETWORKS: SURVEY", Canadian Journal on Multimedia and Wireless Networks Vol. 2, No. 1, February 2011.

21ECE44	FUZZY LOGIC AND NEURAL	L	Т	Р	C
2120244	NETWORK	3	0	0	3
<ul> <li>Course Objectives The student should</li> <li>Master the v This will be intelligent as</li> </ul>	<b>I be made to:</b> arious fundamental concepts of fuzzy logic ar elp you to get sufficient knowledge to analy	nd artif yze an	icial ne d desig	ural ne gn the	tworks. various
interligent o	Shiroi systems.				
Course Outcomes At the end	of the course, the student would be able to:	0 1 0	· C'		
2. To learn	basics of Artificial Neural of theory a	and pr	ogrami	tion ning (	of
3 To analyze	ssors	ard Nei	iral Net	tworks	
4. To learn the	e architecture and algorithm of Cognitron, N	Neo co	gnitron	and th	ne
Unit 1. Fundamen	tals Of Fuzzy Logic			9	
Basic concepts: fuz unionintersection- c compatibility relati systems.	zy set theory- basic concept of crisp sets an ombination of operation- general aggregation ons-orderings- morphisms- fuzzy relationa	d fuzz operat l equa	y sets- ions- fu ations-f	comple uzzy re uzzy s	ements- lations- et and
<b>Unit 2- Architectu</b>	re Of Neural Networks			9	
biological neural ner activations function applications-single separability - Hebb' <b>Unit 3- Basic Neur</b> Back propagation n learning rulesnum associative memor applications-Hopfie <b>Unit 4- Competitiv</b> Neural network b organizing maps an applications adapti algorithm, application	tworks-area of applications-typical Architectus asBasic learning rules- Mcculloch-Pitts neuro- layer net for pattern classification- Bias srule- algorithm -perceptron - Convergence the <b>al Network Techniques</b> eural net:standard back propagation-architect per of hidden layersassociative and other y neural net, auto associative net- Bidirect Id nets-Boltzman machine. <b>Te Neural Networks</b> ased on competition: fixed weight competent d applications-learning vector quantization-cu- ve resonance theory: basic architecture on and analysis of ART1 & ART2.	ure-setf on- Are ses an leorem- ure alg er neu tional etitive ounter and o	ing we chitectu d thre -Delta i orithm- ral ne associa nets- propag peratio	ights-ce ire, alg sholds, rule. - deriva tworks- tive m <b>9</b> Kohone ation n n-archi	ommon orithm, linear 9 ation of - hetro emory- en self ets and tecture,
Unit 5- Special Net Cognitron and Net	eural Networks ecocognitron - Architecture, training algorit	thm a	nd app	olication	<b>9</b> n-fuzzy
associate memories	fuzzy system architecture- comparison of fuz	zy and	neural To	system otal Ho	urs: 45
Text Books					
1. T1. Kliryvar 2. Lawrence Fi	n- Fuzzy System & Fuzzy logic Prentice Hall of assett- fundamental of Neural network Prentic	of India e Hall	a, First , First I	Edition Edition.	
References					
<ol> <li>Bart Kosko,</li> <li>J.Klin and T 1996.</li> </ol>	—Neural network and Fuzzy System- Prentic A.Folger, —Fuzzy sets University and inform	e Hall- mation	1994. - Prenti	ice Hall	
3. J.M.Zurada, house,Delhi	—Introduction to artificial neural system 1994.	ms∥-Jai	ico Pu	blicatio	on
4. VallusuRao and Publicat	and HayagvnaRao , —C++ Neural network ion, New Delhi,1996.	and fu	zzy log	gic∥-BP	В
5. Intelligent S	ystems and Control-http://nptel.ac.in/courses/	<u>10810</u> 4	049/16		

21ECE45	CAD FOR VLSI CIRCUITS	L	T ^	P	C
		3	0	0	3
Course Objectives The student should	be made to:				
• The design	of all VI SI circuits is carried out by making	ng exte	ensive 1	ise Coi	mnuter
Aided Desig	n (CAD) VLSI design tool.	ing ente	115170 0		inputer
• The VLSI de	esign professional needs to have a good under	standin	g of the	e opera	tion of
these CAD	VLSI design tools as these are developed pri	marily	for and	by the	VLSI
design profe	ssionals.				
• These inclu	de the design flow organization for VLS	I, the	standar	d cell	based
synthesis me	ethodologies for digital VLSI, floor plannin	g and	placem	ent pru	nciples
and related to	opics will all be covered.				
At the end	of the course the student would be able to:				
1. students are	expected to have completed one of the import	ant pre	requisit	es for	
professionals	s in the area of VLSI design	1	1		
Unit 1- VLSI Desig	n Methodologies			9	_
Introduction to VL	SI Design methodologies - Review of Data	structu	res and	algori	thms -
Complexity - Tracta	ble and Intractable problems - general purpos	e methor	y and C	combin	atorial
optimization.	see une matacate problems general parpos	e metri	545 101	comon	atoria
Unit 2-Design Rule	S Design rules problem formulation algo	rithma	for co	9 notroint	aronh
compaction - place	ment and partitioning - Circuit representation	n - Pla	cement	algori	thms -
partitioning				0	
U	•			0	
Floor planning cor	ing accepts - shape functions and floor plan sizi	1σ - Tx	mes of	9 local 1	outing
problems - Area rou	ting - channel routing - global routing - algor	ithms f	or glob	al routi	ng.
			-	0	-
Unit 4- Simulation	evel modeling and simulation - Switch-level	model	ing and	9 1. cimul	ation _
Combinational Logi	c Synthesis - Binary Decision Diagrams - Tw	o Level	l Logic	Synthe	sis
C			U	5	
Unit 5- Modelling	And Synthesis		11.0.04	9	
and scheduling -	Simple scheduling algorithm - Assignme	ion - A ent pro	hlem -	n assig . High	level
transformations.	Simple seneduling digoritini rissigning	in pro		mgn	
			To	tal Hoı	ırs: 45
Text Books					
1. S.H. Gerez.	"Algorithms for VLSI Design Automat	ion", J	ohn W	viley &	k
Sons,2002. A	ACC.NO: B133734	,		2	
2. N.A. Sherwa	ani, "Algorithms for VLSI Physical Design	Autom	ation",	Kluwe	r
Academic Pr	ublishers, 2002.				
References			T. ( )	A.C.	
I. Behzad Kaza	avi, "Design of Analog UMOS Integrated C	rcuits"	, Tata I	vicGrav	N
2. Willey M C	Sansen, "Analog Design Essentials" Springe	r. 2006			
2.  (110)  (110)	inolar and MOS Analog Integrated circuit d	esion"	John V	Viley &	27

sons,Inc., 2003.

21ECE46	SATELLITE COMMUNICATION	L 2		P A	
Course Objectiv	es	3	U	U	3
The student show	Id be made to:				
• Understan	d the basics of satellite orbits.				
• Understan	d the satellite segment and earth segment.				
• Analyze tl	he various methods of satellite access.				
• Understan	d the applications of satellites.				
• Understan	d the basics of satellite Networks				
<b>Course Outcome</b>	25				
At the en	d of the course, the student would be able to:				
1. Analyze tl	he satellite orbits.				
2. Analyze tl	he earth segment and space segment.				
<b>3.</b> Analyze the	he satellite Link design.				
Unit 1-Satallita (	<b>Dehite</b>			0	
Kenler"s Laws N	Jewton"s law orbital parameters orbital perturb	ations	station	y keenir	ο Ω
stationary and no	n Geo-stationary orbits – Look Angle Determin	ation_	I imite	of visil	ig, go hility
eclipse-Sub satell	lite point -Sun transit outage-I aunching Proceed	lures -	launch	vehic	les an
propulsion	the point sun transit outage Launening Procee	iures	launer	i venie	us an
Linit 2-Snace Sec	mont			0	
Spacecraft Tech	ology. Structure Primary power Attitude a	nd Orl	hit con	trol T	horm
control and Pror	ulsion communication Payload and supporti	na cub	evetom	uoi, i s Tale	motra
Tracking and con	mand-Transponders-The Antenna Subsystem	ing suc	system	is, 100	meny
	inand-Transponders-The Antenna Subsystem.				
Linit 3 Sotollito I	ink Docian			0	
Unit 3-Satellite I	Link Design	opuotic	n and	9 intorf	rono
Unit 3-Satellite I Basic link analy	<b>Link Design</b> ysis, Interference analysis, Rain induced attended a	enuatio	on and	<b>9</b> interfe	erence
Unit 3-Satellite I Basic link analy Ionospheric chara	Link Design ysis, Interference analysis, Rain induced atto acteristics, Link Design with and without frequen Access And Coding Matheds	enuatio cy reus	on and se.	9 interf	erence
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and	Link Design ysis, Interference analysis, Rain induced atto acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice Data Video Analog d	enuatio cy reus	on and se.	9 interfo	erence
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and	Link Design ysis, Interference analysis, Rain induced atto acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d poadcast multiple access: EDMA TDMA CI	enuatic cy reus ligital	on and se. transmi	9 interfo ssion s	erence ) systen
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br	Link Design ysis, Interference analysis, Rain induced atto acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d roadcast, multiple access: FDMA, TDMA, CL ssion encryption Coding Schemes	enuatio cy reus ligital DMA,	on and se. transmi DAMA	9 interfo ission s A Assig	erence ) systen gnmer
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre	Link Design ysis, Interference analysis, Rain induced atto acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d oadcast, multiple access: FDMA, TDMA, CI ssion – encryption, Coding Schemes.	enuatio cy reus ligital DMA,	on and se. transmi DAMA	9 interfo ission s A Assig	erence ysten gnmer
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INITEL SAT Serie	Link Design ysis, Interference analysis, Rain induced atto acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d roadcast, multiple access: FDMA, TDMA, CI ssion – encryption, Coding Schemes. Applications	enuatio cy reus ligital DMA,	on and se. transmi DAMA	9 interfe ission s A Assig 9 INMA	erence ) system gnmer
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO MEO Sate	Link Design ysis, Interference analysis, Rain induced atter- acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d roadcast, multiple access: FDMA, TDMA, CL ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: allite Navigational System GPS Position Locat	enuatic cy reus ligital DMA, GSM,	on and se. transmi DAMA GPS, incinle	9 interfa ission s A Assig 9 INMA	erence ysten gnmer RSAT
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS Direct Broa	Link Design ysis, Interference analysis, Rain induced attention acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d roadcast, multiple access: FDMA, TDMA, CI ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Locat dcast satellites (DBS/DTH)	enuatic cy reus ligital DMA, GSM, ion Pr	on and se. transmi DAMA GPS, inciples	9 interfa ission s A Assig 9 INMA s, Diffe	erence ysten gnmer RSAT erentia
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa	Link Design ysis, Interference analysis, Rain induced atter acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d toadcast, multiple access: FDMA, TDMA, CI ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Locat dcast satellites (DBS/DTH).	enuatic cy reus ligital DMA, GSM, ion Pr	on and se. transmi DAMA GPS, inciples	9 interfa ission s A Assig A Assig 9 INMA s, Diffe tal Hor	erenco system gnmer RSAT erentia
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa	Link Design ysis, Interference analysis, Rain induced atter acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d oadcast, multiple access: FDMA, TDMA, CE ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Locat dcast satellites (DBS/DTH).	enuatic cy reus ligital DMA, GSM, ion Pr	on and se. transmi DAMA GPS, inciples <b>To</b>	9 interfa ission s A Assig A Assig 9 INMA s, Diffe tal Hou	erenco systen gnmer RSAT erentia
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa	Link Design ysis, Interference analysis, Rain induced atter acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d roadcast, multiple access: FDMA, TDMA, CE ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Locat dcast satellites (DBS/DTH).	enuatic cy reus ligital DMA, GSM, ion Pr	on and se. transmi DAMA GPS, inciples <b>To</b>	9 interfa g ission s A Assig 9 INMA s, Diffe tal Hou	erenco system gnmer RSAT erentia urs: 4
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa <u>Text Books</u> 1. Dennis Ro	Link Design ysis, Interference analysis, Rain induced atter- acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d roadcast, multiple access: FDMA, TDMA, CE ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Locat dcast satellites (DBS/DTH). Dddy. "Satellite Communication", 4th Edition, M	enuatic cy reus ligital DMA, GSM, ion Pr	on and se. transmi DAMA GPS, inciples <b>To</b>	9 interfo ssion s A Assig 9 INMA s, Diffe tal Hou Interna	erenco system gnmer RSAT erentia urs: 4
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa Text Books 1. Dennis Ro 2006.	Link Design ysis, Interference analysis, Rain induced atter- acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d oadcast, multiple access: FDMA, TDMA, CE ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Locat dcast satellites (DBS/DTH).	enuatic cy reus ligital DMA, GSM, ion Pr	on and se. transmi DAMA GPS, inciples <b>To</b>	9 interfa ission s A Assig 9 INMA s, Diffe tal Hou Interna	erence system gnmer RSAT erentia urs: 4 ationa
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa Text Books 1. Dennis Ro 2006. 2. Timothy,F	Link Design ysis, Interference analysis, Rain induced atto- acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d roadcast, multiple access: FDMA, TDMA, CE ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Locat dcast satellites (DBS/DTH). Dddy, "Satellite Communication", 4th Edition, M Pratt, Charles, W.Bostain, JeremyE. Allnutt, "Satellite	enuatic cy reus ligital DMA, GSM, ion Pr <u></u> Mc Gra teCom	on and se. transmi DAMA GPS, inciples <b>To</b> w Hill munica	9 interfa g ission s A Assig 9 INMA s, Diffe tal Hou Interna tion",	erence system gnmer RSAT erentia urs: 4 ationa
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa Text Books 1. Dennis Ro 2006. 2. Timothy,F 2 nd Editior	Link Design ysis, Interference analysis, Rain induced atter- acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d toadcast, multiple access: FDMA, TDMA, CE ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Locat dcast satellites (DBS/DTH). Dddy, "Satellite Communication", 4th Edition, M Pratt, Charles, W.Bostain, JeremyE. Allnutt, "Satellite , Wiley Publications, 2002.	enuatic cy reus ligital DMA, GSM, ion Pr Mc Gra teCom	on and se. transmi DAMA GPS, inciples <b>To</b> w Hill munica	9 interfo ssion s A Assig 9 INMA s, Diffe tal Hou Interna tion",	erence systen gnmer RSAT erentia urs: 4 ationa
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa <u>Text Books</u> 1. Dennis Ro 2006. 2. Timothy,F 2 nd Editior References	Link Design ysis, Interference analysis, Rain induced atter acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d oadcast, multiple access: FDMA, TDMA, CE ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Locat dcast satellites (DBS/DTH).	enuatic cy reus ligital DMA, GSM, ion Pr dc Gra teCom	on and se. transmi DAMA GPS, inciples <b>To</b> w Hill munica	9 interfa 9 ission s A Assig 9 INMA s, Diffe tal Hou Interna tion",	erence system gnmer RSAT erentia urs: 4 ationa
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa Text Books 1. Dennis Ro 2006. 2. Timothy,F 2 nd Editior References 1. Wilt	Link Design ysis, Interference analysis, Rain induced atter- acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d roadcast, multiple access: FDMA, TDMA, CE ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Locat dcast satellites (DBS/DTH). Dddy, "Satellite Communication", 4th Edition, M Pratt, Charles, W.Bostain, JeremyE. Allnutt, "Satellite n, Wiley Publications, 2002.	enuatic cy reus ligital DMA, GSM, ion Pr dc Gra teCom	on and se. transmi DAMA GPS, inciples <b>To</b> w Hill munica	9 interfa g ission s A Assig 9 INMA s, Diffe tal Hou Interna tion",	erence system gnmer RSAT erentia urs: 4 ationa
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa Text Books 1. Dennis Ro 2006. 2. Timothy,F 2 nd Edition References 1. Wilt Com	Link Design         ysis, Interference analysis, Rain induced atteration         Access And Coding Methods         Multiplexing: Voice, Data, Video, Analog – do         Yoadcast, multiple access: FDMA, TDMA, CE         ysion – encryption, Coding Schemes.         Applications         es, INSAT, VSAT, Mobile satellite services:         ellite Navigational System. GPS Position Located         dcast satellites (DBS/DTH).	enuatic cy reus ligital DMA, GSM, ion Pr Mc Gra teCom A. No	on and se. transmi DAMA GPS, inciples <b>To</b> w Hill munica elson, " on, 200	9 interfo ssion s A Assig 9 INMA s, Diffe tal Hou Interna tion", 'Satellit	erence system gnmer RSAT erentia urs: 4 ationa
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa Text Books 1. Dennis Ro 2006. 2. Timothy,F 2 nd Edition References 1. Will Com 2. N A	Link Design ysis, Interference analysis, Rain induced atter- acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – d oadcast, multiple access: FDMA, TDMA, CE ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Locat dcast satellites (DBS/DTH). Dddy, "Satellite Communication", 4th Edition, M Pratt, Charles, W.Bostain, JeremyE. Allnutt, "Satellite n, Wiley Publications, 2002. Dur L.Pritchard, Hendri G. Suyderhoud, Robert munication Systems Engineering", Prentice Hall garwal, "Design of Geosynchronous Space of	enuatic cy reus ligital DMA, GSM, ion Pr dc Gra teCom A. No Craft"	on and se. transmi DAMA GPS, inciples To To w Hill munica elson, " on, 200 Prenti	9 interfa ission s A Assig 9 INMA s, Diffe tal Hou Interna tion", 'Satellit 07. ce Hal	erence system gnmer RSAT erentia urs: 4 ationa
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa Text Books 1. Dennis Ro 2006. 2. Timothy,F 2 nd Editior References 1. Wilt Com 2. N.A 1986	Link Design ysis, Interference analysis, Rain induced atter- acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – do oadcast, multiple access: FDMA, TDMA, CE ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Located dcast satellites (DBS/DTH).           bddy, "Satellite Communication", 4th Edition, M           pratt,Charles,W.Bostain,JeremyE.Allnutt,"Satellite ,Wiley Publications,2002.           pur L.Pritchard, Hendri G. Suyderhoud, Robert munication Systems Engineering", Prentice Hall garwal, "Design of Geosynchronous Space Co.	enuatic cy reus ligital DMA, GSM, ion Pr dc Gra teCom A. No l/Pears Craft",	on and se. transmi DAMA GPS, inciples <b>To</b> w Hill munica elson, " on, 200 Prenti	9 interfa gission s A Assig 9 INMA s, Diffe tal Hou Interna tion", 'Satellit 7. ce Hal	erence system gnmer RSAT erentia urs: 4 ationa
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa Text Books 1. Dennis Ro 2006. 2. Timothy,F 2 nd Edition References 1. Wilk Com 2. N.A 1986 3 Brue	Link Design ysis, Interference analysis, Rain induced atteraction acteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – do oadcast, multiple access: FDMA, TDMA, CI ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Locat dcast satellites (DBS/DTH).           oddy, "Satellite Communication", 4th Edition, N           Pratt,Charles,W.Bostain,JeremyE.Allnutt,"Satellite n,Wiley Publications,2002.           our L.Pritchard, Hendri G. Suyderhoud, Robert ununication Systems Engineering", Prentice Hall garwal, "Design of Geosynchronous Space Go.           oe R. Elbert "The Satellite Communication	enuatic cy reus ligital DMA, GSM, ion Pr Mc Gra teCom A. No l/Pears Craft",	on and se. transmi DAMA GPS, inciples <b>To</b> w Hill munica elson, " on, 200 Prenti-	9 interfa gassion s A Assig 9 INMA s, Diffe tal Hou Interna tion", 'Satellit 07. ce Hal	erence system gnmer RSAT erentia urs: 4 ationa
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa Text Books 1. Dennis Ro 2006. 2. Timothy,F 2 nd Edition References 1. Wilk Com 2. N.A 1986 3. Brue	Link Design ysis, Interference analysis, Rain induced attacteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – do oadcast, multiple access: FDMA, TDMA, CE ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Located dcast satellites (DBS/DTH).           Description           Doddy, "Satellite Communication", 4th Edition, N           Pratt, Charles, W.Bostain, JeremyE. Allnutt, "Satellite , Wiley Publications, 2002.           Dur L.Pritchard, Hendri G. Suyderhoud, Robert munication Systems Engineering", Prentice Hal garwal, "Design of Geosynchronous Space Of the R. Elbert, "The Satellite Communication k. Artech House Bostan London, 1997	enuatic cy reus ligital DMA, GSM, ion Pr dc Gra teCom A. No l/Pears Craft", Appli	on and se. transmi DAMA GPS, inciples <b>To</b> w Hill munica elson, " on, 200 Prenti- cations	9 interfa ssion s A Assig 9 INMA s, Diffe tal Hou Interna tion", Satellit 77. ce Hal	erence system gnmer RSAT erentia urs: 4 ationa
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa <u>Text Books</u> 1. Dennis Ro 2006. 2. Timothy,F 2 nd Editior References 1. Will Com 2. N.A 1986 3. Brue Boo 4 Tri	Link Design         ysis, Interference analysis, Rain induced atteractoristics, Link Design with and without frequen         Access And Coding Methods         Multiplexing: Voice, Data, Video, Analog – dooadcast, multiple access: FDMA, TDMA, CE         ssion – encryption, Coding Schemes.         Applications         es, INSAT, VSAT, Mobile satellite services:         ellite Navigational System. GPS Position Located         dcast satellites (DBS/DTH).         Doddy, "Satellite Communication", 4th Edition, Meratt, Charles, W.Bostain, JeremyE. Allnutt, "Satellite, Wiley Publications, 2002.         Dur L.Pritchard, Hendri G. Suyderhoud, Robert         munication Systems Engineering", Prentice Halgarwal, "Design of Geosynchronous Space Construction         Statellite Communication, 1997.         The Satellite Communication	enuatic cy reus ligital DMA, GSM, ion Pr dc Gra teCom A. No l/Pears Craft", Applie	on and se. transmi DAMA GPS, inciples <b>To</b> w Hill munica elson, " on, 200 Prenti- cations	9 interfa gassion s A Assig 9 INMA s, Diffe tal Hou Interna tion", 'Satellit 7. ce Hal ", Han	erence system gnmer RSAT erentia urs: 4  ationa  e 1, d
Unit 3-Satellite I Basic link analy Ionospheric chara Unit 4-Satellite A Modulation and Digital video Br Methods, compre Unit 5-Satellite A INTELSAT Serie LEO, MEO, Sate GPS, Direct Broa Text Books 1. Dennis Ro 2006. 2. Timothy,F 2 nd Edition References 1. Wilk Com 2. N.A 1986 3. Brue Boo 4. Tri 7	Link Design ysis, Interference analysis, Rain induced atteracteristics, Link Design with and without frequen Access And Coding Methods Multiplexing: Voice, Data, Video, Analog – do oadcast, multiple access: FDMA, TDMA, CE ssion – encryption, Coding Schemes. Applications es, INSAT, VSAT, Mobile satellite services: ellite Navigational System. GPS Position Locat dcast satellites (DBS/DTH).          oddy, "Satellite Communication", 4th Edition, N         Pratt,Charles,W.Bostain,JeremyE.Allnutt,"Satellite NWILP Publications,2002.         our L.Pritchard, Hendri G. Suyderhoud, Robert munication Systems Engineering", Prentice Hall garwal, "Design of Geosynchronous Space Co 6.         ce R. Elbert, "The Satellite Communication", II nd e unuel Ethenakis, "Manual of Satellite Communication", II nd e unuel Ethenakis, "Manual of Satellite Communication", II nd e	enuatic cy reus ligital DMA, GSM, ion Pr Mc Gra teCom A. No l/Pears Craft", Appli- dition, ations"	on and se. transmi DAMA GPS, inciples <b>To</b> w Hill munica elson, " on, 200 Prenti- cations"	9 interfa ission s A Assig 9 INMA s, Diffe tal Hou Interna tion", 'Satellit 7. ce Hal ", Han	erenco system gnmen RSAT erentia urs: 4 ationa

6. Robert G. Winch, "Telecommunication Trans Mission Systems", Mc

Graw-Hill Book Co., 1983.

- 7. Brian Ackroyd, "World Satellite Communication and earth station Design", BSP professional Books, 1990.
- 8. G.B.Bleazard, "Introducing Satellite communications", NCC Publication, 1985.
- 9. M.Richharia, "Satellite Communication Systems-Design Principles", Macmillan 2003.

<b>21ECE47</b>	VIRTUAL AND AUGMENTED	L	T	P	C
	REALITY	3	0	0	3
Course Objectives	l ha mada tar				
	the valence of this course to the or	istin a	4 a a la m	1	<b>1</b> - <i>n</i> - <b>1</b> -
• 10 introduc	ce the relevance of this course to the ex	isting	techno	ology t	nrougn
economic in	ons, case studies and applications with a future	stic vis	1011 210	ing with	I SOCIO-
To understa	nd virtual reality augmented reality and using	r tham	to bui	ild Bior	nadical
• 10 understa	applications	g then			neurcai
• To know th	e intricacies of these platform to develop PI	) A ant	licatio	ns with	hetter
optimality	e introduces of these platform to develop T		matio		
Course Outcomes					
At the end	of the course.the student would be able to:				
1. Analyse &	Design a system or process to meet given s	specifi	cations	with r	ealistic
engineering	constraints.	1			
2. Identify pro	blem statements and function as a member of a	n engi	neering	g design	team.
3. Utilize tech	nical resources				
4. Propose tech	hnical documents and give technical oral pre	sentati	ons rel	ated to	design
mini project	results.				
Unit1-Introduction	1	~		9	
The three I's of virt	ual reality-commercial VR technology and the	e five c	lassic	compon	ients of
a VR system - Ii	nput Devices: (Trackers, Navigation, and C	jesture	Inter	taces):	Three-
dimensional positio	n trackers, navigation and manipulation-interf	aces a	nd gest	ure inte	erfaces-
Output Devices: Gr	apines displays-sound displays & hapite feedos	ack.			
Unit 2-VR Develop Geometric modeling	<b>oment Process</b> g - kinematics modeling- physical modeling - l	oehavio	our mo	9 deling -	• model
Management.					
Unit 3. Content Ci	reation Considerations For VR			0	
Methodology and	terminology-user performance studies-VR	health	and	safety	issues-
Usability of virtual	reality system- cyber sickness -side effects of	expos	ures to	virtual	reality
environment	5 5 5	1			5
Unit 4- VR On The	e Web & VR On The Mobile			10	
JS-pros and cons-	building blocks (WebVR, WebGL, Three.js,	device	orient	tation e	vents)-
frameworks (A-fra	ame, React VR)-Google VR for Andro	id-Scri	pts, n	nobile	device
configuration, bui	lding to android-cameras and interaction	-telepo	orting-s	spatial	audio-
Assessing human pa	arameters-device development and drivers-Des	sign Ha	ptics		
			0		
Unit 5-Application	s ng military applications robotics application	ng A	ð oravb	) d Doo	1 time
Trackingother application	cations - games movies simulations therapy	115- A	uvance	u Kea	I time
rackingother appli	cations- games, movies, simulations, therapy		Та	ntal Hor	urs· 45
			10	110	ui 51 TJ
Text Books					
1. C. Burdea &	Philippe Coiffet, —Virtual Reality Technolog	gy∥, Se	cond E	dition,	
Gregory, Jol	nn Wiley & Sons, Inc.,2008			,	
2. Jason Jerald	. 2015. The VR Book: Human-Centred Design	for Vi	rtual R	eality.	
Association	for Computing Machinery and Morgan & Clay	pool,	New Y	ork, NY	Y,
USA.					

- Augmented Reality: Principles and Practice (Usability) by Dieter Schmalstieg & Tobias Hollerer, Pearson Education (US), Addison-Wesley Educational Publishers Inc, New Jersey, United States, 2016. ISBN: 9780321883575
- 2. Practical Augmented Reality: A Guide to the Technologies, Applications, and Human Factors for AR and VR (Usability), Steve Aukstakalnis, Addison-Wesley Professional; 1 edition, 2016.
- 3. The Fourth Transformation: How Augmented Reality & Artificial Intelligence Will Change Everything, Robert Scoble & Shel Israel, Patrick Brewster Press; 1 edition, 2016.
- 4. Learning Virtual Reality: Developing Immersive Experiences and Applications for Desktop, Web, and Mobile, Tony Parisi, O'Reilly Media; 1 edition, 2015.
- 5. Programming 3D Applications with HTML5 and WebGL: 3D Animation and Visualization for Web Pages, Tony Parisi, O'Reilly Media; 1 edition, 2014.
- 6. Learning Three.js: The JavaScript 3D Library for WebGL Second Edition, Jos Dirksen, Packt Publishing ebooks Account; 2nd Revised ed. Edition 2015.

<b>21ECE48</b>	PRINCIPLES OF SPEECH		T	P	C
	PROCESSING	3	0	0	3
Course Objectives	d ha mada ta:				
The student should	nd the speech production mechanism and the	variou	s snoo	sh	
• 10 understa	niques and speech models	variou	s speed	-11	
<ul> <li>To understat</li> </ul>	nd the speech compression techniques				
<ul> <li>To understand</li> </ul>	nd the speech recognition techniques				
<ul> <li>To know the</li> </ul>	e speaker recognition and text to speech synthe	esis tecl	hniaue	S	
Course Outcomes				-	
At the end	of the course, the student would be able to:				
1. Design spee	ch compression techniques				
2. Configure sp	peech recognition techniques				
3. Design spea	ker recognition systems				
4. Design text	to speech synthesis systems				
Unit 1-Speech Sign	121 Unaracteristics & Analysis	tio Dom	racanta	tion of	II Spaca ^L
representing_ and	process - speech sounds and realures - Phone back in time and frequency domains. Short Ti	me An	alveia	nion of of Space	speech
representing - spe Short- Time Energy	and Zero-Crossing Rate - Short-Time Autoco	nne An	arysis ( on Fun	ction - 9	Short-
Time Fourier Trans	form (STFT) - Speech Spectrum - Censtrum -	Mel-Fi	requen	cv Cens	short-
Coefficients - Heari	ing and Auditory Perception - Perception of L	oudness	s - Crit	ical Bai	nds -
Pitch Perception		oudiles	5 011	lear Du	140
1					
Unit 2-Speech Con	npression			-	12
Sampling and Quan	tization of Speech (PCM) - Adaptive different	tial PCI	M - De	lta	
Modulation - Vecto	r Quantization- Linear predictive coding (LPC	C) - Coo	de exci	ted Line	ear
predictive Coding (	CELP)				
U	² 4 ²				10
Unit 3-Speech Rec	ognition a mitian Hiddan Markay Madal (HMM) trai	nina na	aadur	for II	1 <i>2</i> мм
LPC for speech reco	based on HMM language models for large y	ning pr	ocedui	e lor H	IVI IVI -
recognition - Overa	l recognition system based on subword units	- Conte	ary spe ext den	endent	
subword units- Sem	antic post processor for speech recognition	Conte	n uep	cildent	
	I I I I I I I I I I I I I I I I I I I				
Unit 4-Speaker Re	cognition			5	
Acoustic parameters	s for speaker verification- Feature space for sp	beaker 1	ecogni	ition-sir	nilarity
measures- Text dep	endent speaker verification-Text independent	speake	r verifi	cation	
techniques					
Un:4 5 Smoolean Da	accentition And Torre To Speech Sumthering			5	,
Text to speech sunt	toginuon And Text To Speech Synthesis hesis(TTS)-Concetenative and waveform synt	hasis m	athoda	Sub w	ord
units for TTS intell	igibility and naturalness-role of prosody	10313 11	ictious	, sub-w	Ju
	isomey and naturalless-role of prosody				
			Т	otal Ho	urs: 4
Text Books					
1. L. R. Rabine	er and R. W. Schafer. Introduction to Digital	Signal	Proces	sing.	
Foundations	andTrends in Signal Processing Vol. 1, Nos.	1-2 (20	007) 1-	-194	

2. Ben Gold and Nelson Morgan "Speech and Audio signal processingprocessing and perception of speech and music", John Wiley and sons 2006

- 1. Lawrence Rabiner, Biiing and– Hwang Juang and B.Yegnanarayana "Fundamentals of Speech Recognition", Pearson Education, 2009
- 2. Claudio Becchetti and Lucio Prina Ricotti, "Speech Recognition", John Wiley and Sons, 1999
- 3. Donglos O shanhnessy "Speech Communication: Human and Machine ", 2nd Ed. University press 2001.